When plants attack: parasitic plants use ethylene as a host invasion signal

November 04, 2020

Nara, Japan - Mutants that reveal the secrets of how plants attack? No, it's not a scene from a science fiction movie, but you could be forgiven for thinking that. Instead, it's a scene from real life:

Researchers at Nara Institute of Science and Technology in Japan report in a new study in Science Advances that parasitic plants use the plant hormone ethylene as a signal to invade the roots of host plants.

To develop a successful parasitic relationship, parasitic plants form a specialized structure, the haustorium which attaches to and invades the host plant. The formation of haustoria is regulated by signal molecules derived from the host plant and allows the parasitic plant to absorb water, nutrients, and small materials from the host plant.

"To understand the genetic programs for haustorium development, we identified mutants that displayed haustorial defects on host invasion," says lead author of the study Songkui Cui. "Genome sequencing showed that these mutants have defective ethylene signaling, and it turned out that ethylene signaling genes are crucial for the parasitic plant to infect its host plant."

Ethylene is a gaseous plant hormone that is involved in fruit ripening, aging of leaves, and the formation of root nodules. Ethylene is also widely involved in plant interactions with viruses and numerous organisms, such as insects and bacteria, lending either resistance or susceptibility to plants depending on the types of pathogens.

"Our results indicate that ethylene mediates host recognition in parasitic plants for host invasion," explains project leader Satoko Yoshida. "This is the first time that the mediation of host invasion by parasitic plant genes has been identified via forward genetics. Our findings offer a new understanding of how a parasitic plant uses the ethylene molecule to tweak haustorium development and host invasion."

Forward genetics is used to identify genes, or sets of genes, that produce a particular characteristic in an organism. The model species used in this study is from a family of parasitic plants that includes destructive weeds. But the molecular basis for their parasitism has been largely unexplored until now.

"Our results suggest that parasitic plants have taken over ethylene signaling for parasitism at multiple stages of their life cycle, such as germination, haustorium growth termination, and host invasion. This knowledge could provide new ways to use ethylene and ethylene inhibitors to control a broader range of parasitic weeds, including those that don't rely entirely on hosts to complete their life cycle, by manipulating haustorial function," says Cui.
-end-
Resource

Title: Ethylene signaling mediates host invasion by parasitic plants

Authors: Songkui Cui, Tomoya Kubota, Tomoaki Nishiyama, Juliane K. Ishida, Shuji Shigenobu, Tomoko F. Shibata, Atsushi Toyoda, Mitsuyasu Hasebe, Ken Shirasu & Satoko Yoshida

Journal: Science Advances

Information about Prof. Yoshida lab can be found at the following website:

https://bsw3.naist.jp/yoshida/index-en.html

Nara Institute of Science and Technology

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.