Lighting the way to selective membrane imaging

November 04, 2020

Kanazawa, Japan - Researchers at Kanazawa University monitored the emission of blue-green light from water-soluble tetraphenylethene molecules adsorbed at a phospholipid-adsorbed liquid-liquid interface made to resemble a biomembrane. They found that the process could be reversibly controlled by an externally applied potential (voltage), which opens the possibility for a new class of molecular probes and targeted drug delivery systems.

The targeted delivery of therapeutic drugs or DNA directly to cells has many uses for treating disease, hence there is increasing interest in biomolecules that interact directly with cell membranes. Aggregation-induced emission (AIE), a promising technique with applications for functional materials, optoelectronics, and biomedical engineering, is a process by which self-aggregates can be made fluorescent upon stacking together. Tetraphenylethene (TPE) derivatives are propeller-shaped molecules with four phenyl rings which exhibit this property. Individually, these molecules are non-fluorescent, because their photo-excited states decay to the ground state through non-emissive molecular vibration or rotation. However, when several of these molecules aggregate together, they become fluorescent and emit blue-green light.

Researchers from the Institute of Science and Engineering at Kanazawa University studied the AIE behavior of water-soluble TPE derivatives on an artificial cell membrane surface that was formed by self-assembly of phospholipid molecules, which each have a hydrophilic (water-loving) "head" and two hydrophobic (water-fearing) "tails". Phospholipids can also be used to make bubbles called vesicles that can fuse with living cell membranes to deliver a drug or DNA payload. "Potential applications of this work include the selective labeling of targeted vesicles containing pharmaceutical drugs," says senior author of the study Hirohisa Nagatani. Using ion transfer voltammetry and surface-sensitive modulation spectroscopy, the research team was able to show that the phase transfer and interfacial adsorption of charged TPE molecules occurred reversibly based on an applied potential. This mimics the membrane potential of the living cells, which plays a crucial role in many physiological processes, including ion transportation and nerve impulse transmission. "The voltage-induced behavior we observed in simple water-soluble molecules may be important for the development of new sensitive probes of membrane potential for biomedical applications," explains Nagatani. "Our system could also be an alternative to voltage-sensitive dyes as molecular probes". The researchers also note the possibility of using this system as a photosensitizer for cancer phototherapy, in which cells can be selectively marked for light radiation.
-end-


Kanazawa University

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.