'Monster tumors' could offer new glimpse at human development

November 04, 2020

Finding just the right model to study human development--from the early embryonic stage onward--has been a challenge for scientists over the last decade. Now, bioengineers at the University of California San Diego have homed in on an unusual candidate: teratomas.

Teratomas-- which mean "monstrous tumors" in Greek--are tumors made up of different tissues such as bone, brain, hair and muscle. They form when a mass of stem cells differentiates uncontrollably, forming all types of tissues found in the body. Teratomas are generally considered an undesired byproduct of stem cell research, but UC San Diego researchers found an opportunity to study them as a model for human development.

Researchers report their work in a paper published Nov. 4 in Cell.

"We've been fascinated with the teratoma for quite a while," said Prashant Mali, a professor of bioengineering at the UC San Diego Jacobs School of Engineering. "Not only is the teratoma an intriguing tumor to look at in terms of the diversity of cell types, but it also has regions of organized tissue-like structures. This prompted us to explore its utility in both cell science and cell engineering contexts."

"There's no other model like it. In just one tumor, you can study all of these different lineages, all of these different organs, at the same time," said Daniella McDonald, an M.D/Ph.D. candidate in Mali's lab and co-first author of the study. "Plus, it's a vascularized model, it has a three-dimensional structure and it's human-specific tissue, making it the ideal model for recreating the context in which human development happens."

The team used teratomas grown from human stem cells injected under the skin of immunodeficient mice. They analyzed the teratomas with a technique called single-cell RNA sequencing, which profiles the gene expression of individual teratoma cells. The researchers were able to map 20 cell types, or "human lineages" (brain, gut, muscle, skin, etc.) that were consistently present in all the teratomas they analyzed.

The researchers then used the gene editing technology CRISPR-Cas9 to screen and knock out 24 genes known to regulate development. They found multiple genes that play roles in the development of multiple lineages.

"What's remarkable about this study is that we could use the teratoma to discover things in a much faster way. We can study all of these genes on all of these human lineages in a single experiment," said co-first author Yan Wu, who worked on this project as a Ph.D. student in the labs of Mali and UC San Diego bioengineering professor Kun Zhang. "With other models, like organoids, that separately model one lineage at a time, we would have had to run many different experiments to come up with the same results as we did here."

"Teratomas are a very unique type of human tissue. When examined through the lens of single-cell sequencing, we can see that they contain most major representative cell types in the human body. With that understanding, we suddenly have an extremely powerful platform to understand, manipulate and engineer human cells and tissues in a far more sophisticated way than what was previously possible," Zhang said.

The researchers also showed that they can "molecularly sculpt" the teratoma to be enriched in one lineage--in this case, neural tissue. They accomplished this feat using a microRNA gene circuit, which acts like a molecular chisel by carving away unwanted tissues--these are selectively killed off using a suicide gene--and leaving behind the lineage of interest. The researchers say this has applications in tissue engineering.

"We envision that this study will set a new foundation in the field. Hopefully, other scientists will be using the teratoma as a model for future discoveries in human development," McDonald said.
-end-


University of California - San Diego

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.