Brain imaging technology can reveal what a person is thinking about

November 05, 2000

Powerful brain imaging technology is allowing researchers to actually tell what a person is thinking before they even say it.

A study, published in the November issue of the international Journal of Cognitive Neuroscience, has shown that it is possible for researchers to look at brain imaging data and determine whether a person is imagining a face or a place.

"With the technology available to us today, we are now able to identify the content of a person's thought, albeit in a very limited context," says Dr. Kathleen O'Craven, a cognitive neuroscientist who led the study at Massachusetts General Hospital. Dr. O'Craven is now with Toronto's Rotman Research Institute at Baycrest Centre for Geriatric Care.

In the study, six women and two men, aged 20 to 39, were put through two cognitive exercises: one involved looking at pictures of faces, and a second involved looking at pictures of places or landscapes. Later these same adults were asked to mentally 'imagine' the faces and the places they had earlier seen. During both tests, functional magnetic resonance imaging (fMRI) scans were taken of their brains.

Many previous studies have shown that brain areas can be selective for processing a particular type of visual information. In the cortical brain regions associated with mental processing, the 'fusiform' face area responds strongly to faces while the 'parahippocampal' place area responds strongly to indoor and outdoor scenes depicting the layout of local space.

In this study, Dr. O'Craven and colleague Dr. Nancy Kanwisher of the Massachusetts Institute of Technology found the strongest evidence yet that this specialization holds true even when participants were given no visual stimulus and were simply asked to 'imagine' a face or a place. They also found that the magnitude of activity in these two brain areas is much livelier or stronger when one is seeing the picture (physically present in front of them) compared with just imagining it.

The most fascinating finding, however, is when 'data coders' (researchers who interpret data) were asked to look at fMRI scans and guess whether the study participant was thinking of a face or place. They were able to accurately report what the participant was thinking about on 85 percent of the trials!

"What we've shown is that we can actually tell, on a moment-by-moment basis, what an individual is thinking about, by measuring brain activity rather than having the person tell us," says Dr. O'Craven. "Of course, this can be done only in a limited context -- we've been able to demonstrate it for differentiating between faces and places -- but the implications are far-reaching."

She says the technique could be used to gain some insight into what is happening in the minds of people who are unable to communicate because they are suffering from an injury or disorder that makes speech impossible.

"We may someday be able to get a glimpse of what a patient is able to comprehend, even when that person can't answer questions directly. We could show them pictures of faces and places and, using fMRI technology, see whether their visual system is processing them. In addition, if these brain areas respond differentially to the 'spoken' names of people and places, we may be able to infer that they understand."
The study was supported by The Bunting Institute at Radcliffe College and by grants from the National Institute of Mental Health, the Human Frontiers Science Program, and the Dana Foundation.

Baycrest Centre for Geriatric Care

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to