Perception of color contrast, constancy depends on neural 'reflexes,' says vision theory

November 05, 2000

DURHAM, N.C. - In the latest in a series of papers proposing that visual perception is an intricate collection of reflexes similar to the familiar 'knee jerk' response, Duke University Medical Center neurobiologists outline evidence on the perception of color that they say supports their theory.

In an article in the Nov. 7 issue of Proceedings of the National Academy of Sciences, neurobiologists Beau Lotto and Dale Purves present experiments showing that the visual system perceives color based not on the light that actually reaches the eye, but on the reflectances and illuminances that usually would have generated the stimulus in the past.

The study reported in the PNAS is based on the well-known illusion that the color of a surface can appear quite different, depending on its context.

"The perception of color has fascinated scientists from Isaac Newton to Edwin Land [inventor of the Polaroid camera," said Purves. "A basic problem, recognized early on in studies of color, is that the physical properties of light stimuli do not always give rise to expected color sensations. Thus, a patch that would look purplish on a white background looks distinctly bluish on a purple background; this illusion is called color contrast. In the same vein, different stimuli can elicit the same color when viewed in different circumstances, an illusion called color constancy."

In experiments that explore the basis of color contrast and constancy, Lotto and Purves presented volunteer subjects with images displayed on a computer screen in which pairs of colored targets were shown in the context of two differently colored surroundings. The subjects were then asked to use onscreen "buttons" to adjust the apparent color of one target until it matched the perceived color of the other target.

By measuring the subjects' adjustments, the researchers could determine how the colors of the surroundings affected perceptions of the target color. They found that by changing the context so that the identical targets were more likely to have been generated by differently reflective objects under different illuminants, the perceived color difference between the physically identical targets was increased. However, if the context was changed such that the targets were more likely to signify similar objects under similar illumination, the perceived color difference between the targets decreased.

"This finding is what one would expect if the illusion of color contrast represents the experience of the visual system with the physical laws that govern how reflectance and illumination combine in generating the ambiguous light that hits the eye," Purves said.

The rationale for this kind of explanation, according to Lotto and Purves, is that the light that enters the eye does not carry unambiguous data about the visual world.

"Since photons don't carry any information about their history, there's no direct way to disentangle what has actually given rise to the light falling on the retina," Purves said. "The light that reaches the eye is always a product of both the quality of the object's surface and the quality of its illumination. So it's impossible to know the extent to which the stimulus coming from an object is determined by the object's reflectance properties or the conditions of its illumination.

"Therefore, the basic problem in vision is that the meaning of a light stimulus is inevitably ambiguous," he said.

According to the argument presented in the PNAS paper, the only way observers can sort out the "meaning" - or more appropriately, the behavioral significance - of such ambiguous stimuli is to use trial and error to indicate what they should perceive. Thus, humans gradually evolved the reflexive visual circuitry that enables them to see, not the actual properties of the light falling on the retina, but the sources in the physical world that typically would have generated that type of stimulus in the past.

Despite its simplicity, this wholly empirical theory remains highly controversial, Purves said. "The idea of empirical influences on vision has been around for a long time, but to a large extent has been ignored by people doing neurobiology, or considered as a way of modulating basic visual processing machinery under the rubric of 'top-down' influences on 'bottom-up' mechanisms," said Purves. "The reason is that neurobiologists have made great progress using conventional techniques of anatomy and physiology to map the brain's visual circuitry, and this work has proven enormously valuable.

"Given that kind of success, you really don't need to think about whether some arcane aspects of visual perception provide a better framework for understanding vision," he said. "The peculiar phenomena we have been concerned with can easily be ignored as anomalies that don't have much importance.

"The problem is that, after 50 years of work, neurobiologists still can't explain in terms of visual circuitry any aspect of visual perception, no matter how simple," Purves said. "This evidence about how color is perceived, together with what we have recently discovered about the perception of luminance [black and white stimuli], orientation and motion argue pretty strongly that all these visual percepts arise on the same empirical footing. This way of thinking rationalizes a long list of phenomena that are otherwise very hard to explain."

In related papers published over the past three years, Purves and his colleagues have reported other experiments using visual illusions to explore perception of brightness, shading, color and geometry (See Web site at for examples).

According to the neurobiologists, the empirical theory of vision, if supported by further experiments, could yield a far more productive approach to understanding the brain, as well as practical applications such as computers that more realistically employ the strategies used by the brain. "The visual part of the brain - and presumably the rest of the brain as well - seems to work like a computer that doesn't 'understand' the rules of the game it's playing," said Purves. "Nevertheless, it's already clear a computer can develop a pretty good game of, say, checkers simply by changing its connectivity according to feedback about the moves that worked well in the past. Getting computers to see things, however, has been a difficult problem that remains largely unsolved,"said Purves.

"Humans have had millions of years as a species, and a fair number of years as individuals, to perfect the neural networks triggered by visual stimuli. This very long process of shaping connections by trial and error is apparently what has made us so good at visualizing the world we live in, even though we never really see what's there."
Photo caption: In these examples of how the color of surroundings influence perceived color, the two physically identical tiles (marked with black dots in the image filename purvimg.jpg) appear opposite in color (greenish on the left, and reddish on the right) according to the colors of their surrounding tiles. This effect occurs because the visual system perceives the colors of the two surrounding objects as being consistent with the "experience" evolved over millennia that the objects represent differently reflective surfaces under different illuminants. Placing a mask (purvmsk.jpg) over the rest of image shows the targets to be identical.

Note to editors: Images used in the PNAS paper are available at in the folder "Duke News Service." The filenames for the images discussed are purvimg.jpg and purvmsk.jpg. A web site illustrating other visual illusions the scientists have studied to develop a wholly empirical theory of vision is at Also, a background article on the theory is at

Dale Purves may be reached at (919) 684-6122, e-mail:

Duke University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to