NC State physicists get first glimpse of nanoscale molecular behavior

November 05, 2000

NEWS RELEASE A team of North Carolina State University physicists has discovered a new method for measuring the molecular properties of materials, which could assist in the development of a wide variety of cutting-edge nanostructure technologies.

The technique - called Gradient-Field-Raman (GFR) spectroscopy - measures the behavior of molecules, at a scale of one-billionth of a meter, by reflecting light off the material being studied.

Dr. Hans D. Hallen, assistant professor of physics at NC State, has found molecules reacting differently to the light than would be expected using the previously most advanced spectroscopy technique for studying the vibrations of molecules or solids. The new GFR spectroscopy takes advantage of these differences.

Hallen, along with former students Eric Ayars and Catherine Jahncke, are publishing those results in the Nov. 6 edition of the physics journal Physical Review Letters.

"Using Gradient-Field-Raman spectroscopy, we can look at nanostructures of all sorts: semiconductors, biological materials and nanofabricated structures," Hallen said. "If you have something small, nanometers in size, and want to know how it fits together, this is the way to do it."

Scientists and engineers across the nation are currently engaged in a major nanotechnology research push. Their goal is to develop the ability to build new materials at the molecular level. Potential new materials include structures stronger than steel but much lighter, minuscule transistors and memory chips, DNA-based structures, quantum wires and laser emitters.

Science policy experts say nanotechnology advances could result in a science and technology revolution. But first, they say, we have to understand the principles of structures at such tiny scales.

The work of Hallen and his colleagues is an important step in that direction.

GFR spectroscopy is similar in principle to Raman spectroscopy, but with resolution measured in nanometers (or one-billionth of a meter) rather than in millimeters. Raman spectroscopy was developed in the 1920s and refined in the 1970s to study materials at a microscopic scale (at one-millionth of a meter). With both Raman and GFR spectroscopy, light directed at a sample is reflected from the sample at a different frequency than the light's initial frequency. The frequency difference, caused by the coupling of the light photons with bonds in the molecule or solid, indicates the vibration and rotation of the molecules being studied.

In normal Raman spectroscopy, the coupling between the light and the molecule is brought about by a change in polarizability as the molecule vibrates along a bond. But when Hallen and his colleagues used a new instrument - called a near-field scanning optical microscope - to get a closer look, they discovered vibration patterns that couldn't be explained using the rules associated with normal Raman spectroscopy.

They then discovered that the coupling between the light and molecule in GFR spectroscopy is moderated by a strong electric field gradient that shifts the potential energy of the atoms as they move during the vibration.

"This helps you pick apart the various vibrations at the surface of a sample a little bit better than you could before," Hallen said. "You can get a good, almost three-dimensional, picture of the vibration modes."
-end-
More information about Hallen's research is on the Web at www.physics.ncsu.edu/optics. For the abstract of the Physical Review Letters article, contact NC State News Services at 919/515/3470 or kevin_potter@ncsu.edu

Media Contacts:
Dr. Hans D. Hallen
919-515-6314
hans_hallen@ncsu.edu

Kevin Potter
NC State News Services
919-515-3470
kevin_potter@ncsu.edu

North Carolina State University

Related Spectroscopy Articles from Brightsurf:

Perspectives of infrared spectroscopy in quantitative estimation of proteins
The present review describes the basic principle and the instrumentation of IR spectroscopy along with its advancements.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Researchers demonstrate record speed with advanced spectroscopy technique
Researchers have developed an advanced spectrometer that can acquire data with exceptionally high speed.

Spectroscopy approach poised to improve treatment for serious heart arrhythmia
Researchers have demonstrated that a new mapping approach based on near infrared spectroscopy can distinguish between fat and muscle tissue in the heart.

Late blight research pairs spectroscopy with classic plant pathology diagnostics
Gold and colleagues at the University of Wisconsin-Madison recently published research showing how they used contact spectroscopy to non-destructively sense how plant pathogens differentially damage, impair, and alter plant traits during the course of infection.

Doing more with terahertz: Simplifying near-infrared spectroscopy systems
Researchers from Beihang University, China, and Tokushima University, Japan, have developed a terahertz spectroscopy scheme that offers outstanding resolution using a single laser.

A new horizon for vibrational circular dichroism spectroscopy
(1) The development of solid state and time-step VCD methods opened a new horizon to reveal the mechanism of chirality amplification from microscopic to supramolecular scales.

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.

Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Read More: Spectroscopy News and Spectroscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.