In powerful gamma-ray bursts, neutrinos may fly out first, scientists say

November 05, 2001

The most powerful explosions in the universe, gamma-ray bursts, may come with a 10-second warning: an equally violent burst of ultra-high-energy particles called neutrinos.

These neutrinos, nearly massless particles that can pass through the Earth unhindered and can penetrate regions of space that choke gamma rays and other forms of light, may carry details of the very first stars to form in the universe. Their presence may also help scientists count the number of massive stars in the universe that have collapsed to form black holes, for many of these collapses may be "dark"--void of signature gamma rays and other telltale radiation, yet flush with neutrinos.

Peter Meszaros of Penn State and Eli Waxman of the Weizmann Institute of Science in Israel publish details of this theory in a recent issue of Physical Review Letters (vol. 87, p. 171102, October 2001).

Gamma-ray bursts are mysterious flashes of gamma rays, the highest-energy form of light. These bursts occur frequently--about once a day, from our vantage point--yet randomly across the sky, lasting for only a few seconds. As such, they are difficult to detect and analyze. Most bursts occur at "cosmological" distances, several billions of light years from Earth from an era when the universe was quite young.

Meszaros said that about two-thirds of all gamma-ray bursts could arise from a fireball formed when the core of a star at least 25 times more massive than the Sun collapses into a black hole. Scientists call such a collapsing star a "collapsar."

In the collapsar model, terrific energy is released as matter pours into a newly formed black hole. A fireball rushes out at near light speed and, due to surrounding stellar pressure, collimates into a jet. This jet smashes into the original star's envelope, which is left behind after the star's core collapsed. If the jet breaks free of the envelope, it produces shock waves that create gamma rays, often by tripping over itself or ramming into other external matter. Scientists recognize this flash of light as the gamma-ray burst.

Yet before the fireball exits the stellar envelope to make gamma rays, Waxman said, it undergoes internal shocks. These shocks accelerate protons, which collide with X-ray photons in the newly forming jet cavity inside the envelope, which in turn create electrons, neutrinos, and anti-neutrinos. The neutrinos punch through the stellar envelope at least ten seconds before the gamma rays are formed.

Furthermore, neutrino bursts can be detected even when there is no gamma-ray burst, Meszaros said. Often, a jet cannot punch through the stellar envelope and create gamma rays--or it might not punch through completely. Regardless, by this point the jet has formed neutrinos, which can easily penetrate the envelope of what Meszaros and Waxman call "choked-off, gamma-ray dark collapses." Thus, neutrino bursts serve as a measure of massive star demise, produced by collapsars that may or may not generate a gamma-ray burst.

This is significant, Waxman said, because the first stars that formed in the universe--beyond redshift 5--might have been far more massive than stars today and, as physics would have it, more likely to be "choked-off, gamma-ray dark collapses," invisible to all detectors other than neutrino detectors.

Meszaros said the AMANDA experiment in Antarctica may soon be able to determine relevant limits on the rate of "dark" as well as "bright" collapses. A cubic-kilometer neutrino telescope called ICECUBE, planned in the Antarctic ice cap as an extension of AMANDA, would provide even greater sensitivity to neutrino bursts.

"Gamma-ray bursts are the strongest known explosions in the universe, but they may be only the tip of the iceberg," Meszaros said. "There could be a far larger number of similarly violent bursts detectable only through their ultra-high-energy neutrinos." These neutrinos would be in the TeV energy range, Meszaros said.
To receive a copy of the paper about the neutrino-burst theory published in Physical Review Letters, refer to and get the article Phys. Rev. Lett., vol. 87, page #171102, or contact For information about the AMANDA detector, refer to For background information on gamma-ray bursts, refer to

< Chris Wanjek, GSFC, for Penn State >

Contact: Peter Meszaros at Penn State: phone +814-865-0418, e-mail Eli Waxman at the Weizmann Institute: phone +972-8-934 426, e-mail Barbara Kennedy at Penn State (PIO): phone +814-863-4682, e-mail Yivsam Azgad at the Weizmann Institute (Israel): phone +972-8-934 3856 , e-mail Jeffrey Sussman at the Weizmann Institute (New York): phone +212-895-7951, e-mail

Penn State

Related Black Hole Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.

Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.

Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.

Read More: Black Hole News and Black Hole Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to