Study: tree coring seems to be quicker, cheaper method of measuring radiation

November 05, 2001

CHAPEL HILL - Monitoring uranium contamination by drilling wells costs a lot, but a new study suggests it may be possible to do the same monitoring far more cheaply by coring trees on potentially radioactive sites.

Dr. Drew Coleman, assistant professor of geologic sciences at the University of North Carolina at Chapel Hill, and his graduate student Michael Bulleri conducted the study. They presented their results today (Nov. 5) at a national meeting of the Geological Society of America in Boston.

"Based on work I did earlier, we set out to determine if we could monitor near-surface water contamination around a depleted uranium weapons manufacturing site outside Concord, Mass., by measuring uranium concentrations in the living parts of trees growing nearby," Coleman said.

"Mike's results have been fantastic. By testing the sapwood - the living parts of oak trees he cored close to the site -- he has found a definite bull's-eye pattern around the site where the concentration goes up the closer one gets to it."

Bulleri took all their samples on public and private lands surrounding the facility, which used to be owned by Nuclear Metals Inc. and has been owned by the Starmet Corp. since 1997.

The two tested samples using a thermal ionization mass spectrometer at UNC and a technique known as isotope dilution. They could distinguish between natural uranium from the soil and depleted uranium contamination by measuring the ratios of uranium 238 to uranium 235 in each sample.

Natural uranium has a ratio of 137.88 atoms of 238 for every one atom of 235, Coleman said. The depleted form - what is left over after an enrichment process used for making nuclear fuels and bombs - has a ratio of about 500 to one.

Trees suck up water beneath the ground and store the radioactivity it contains for many years, he said. Comparing isotopes allows researchers to pinpoint the radioactive contamination's source and level.

"We found there's not much contamination outside the Concord site, and there's never been very much, which we know from looking at earlier water samples," the geologist said. "What's interesting and potentially very important is that we don't have to drill wells, which are extremely expensive, to determine what the uranium concentrations are in the ground."

The two detected depleted uranium in tree bark several kilometers away from the site, which could only have been deposited as airborne particles, Coleman said. They cannot say whether the radiation in the bark might present a health hazard.

"Assuming we have trees to look at, we know we can apply this method of investigation to many other contaminant sites in the United States and abroad," Bulleri said. "This is exciting." Coleman said the method promises to be reliable as well as economical.

"There are many nuclear sites and radioactive sites in the United States that need to be monitored," he said. "Instead of going out and doing a lot of expensive testing, you can just core a few trees and get the answer over a huge area very quickly. This potentially could boost safety by enhancing monitoring."

Researchers and others take core samples with a hand-held device they screw into the tree through the bark, sapwood and heartwood. The simplest use is to learn how old a tree is by counting rings in the resulting core.
-end-
Note: During the meeting, Coleman and Bulleri can be reached through Bulleri's cell phone at (919) 672-8450 or Coleman's hotel number, (617) 236-2000. Beginning Thursday, Nov. 8, they can be reached at (919) 962-0705 or dcoleman@unc.edu. Contact: David Williamson, (919) 962-8596

By DAVID WILLIAMSON UNC News Services

University of North Carolina at Chapel Hill

Related Uranium Articles from Brightsurf:

Russian scientists suggested a transfer to safe nuclear energy
Scientists from Far Eastern Federal University (FEFU), Ozersk Technological Institute, and the Russian Academy of Sciences have improved a processing technology of a monazite concentrate which is a mineral raw material employed as a source of rare earth elements and thorium.

Story tips: Molding matter atom by atom and seeing inside uranium particles
Story tips from the Department of Energy's Oak Ridge National Laboratory: Molding matter atom by atom and seeing inside uranium particles

Atomic fingerprint identifies emission sources of uranium
Depending on whether uranium is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies.

Old molecule, new tricks
Fifty years ago, scientists hit upon what they thought could be the next rocket fuel.

Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Uranium chemistry and geological disposal of radioactive waste
A new paper to be published on Dec. 16 provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's nuclear legacy.

Laser-produced uranium plasma evolves into more complex species
When energy is added to uranium under pressure, it creates a shock wave, and even a tiny sample will be vaporized like a small explosion.

Using building materials to monitor for high enriched uranium
A new paper details how small samples of ubiquitous building materials, such as tile or brick, can be used to test whether a facility has ever stored high enriched uranium, which can be used to create nuclear weapons.

Uranium toxicity may be causing high rates of obesity and diabetes in Kuwait
Kuwait has some of the highest rates of obesity and diabetes in the world, and scientists don't know why.

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy
Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater.

Read More: Uranium News and Uranium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.