New study shows possible role of SERMs in future menopausal hormone therapy

November 05, 2003

Chevy Chase, MD, November 5, 2003-- New research published this month in the journal Endocrinology highlights a possible safe, future treatment for postmenopausal women. The research, which was conducted by doctors at Laval University in Quebec, Canada, found that EM-652, a selective estrogen receptor modulator (SERM) given in association with an estrogen, may be effective at controlling hot flashes and preventing breast, uterine and ovarian cancer as well as osteoporosis in postmenopausal women.

Additionally, the combination shows promise in potentially helping with brain function and preventing Alzheimer's disease with no risk or negative effect.

Over the past year, millions of women have become afraid and confused about the risks and benefits of hormone replacement therapy following the results of the Women's Health Initiative Study (WHI), which found that women on the combination replacement estrogen and progestin have an increased risk (26 percent) of developing breast cancer. In light of these findings, the medical community has worked to determine the best way to treat the symptoms and risks of menopause, while researchers search for alternative therapies for the millions of women who used combination hormones to treat their menopausal symptoms, such as hot flashes. Dr. Fernand Labrie and his colleagues in Quebec, Canada have now demonstrated that the next generation of menopausal therapy may lie in a combination of SERMs and estrogen, with the SERM preventing the potential risk of breast cancer caused by the estrogen.

Through three separate studies on rats, Dr. Labrie and his team sought to validate the promise of EM-652 as a postmenopausal treatment. The researchers treated different groups of rats with EM-652 and estrogen and measured the impact on the mammary gland and uterus. One study examined the effects of 17beta-estradiol, an estrogen and EM-652 alone and in combination.

The findings showed that when administered together, the estrogen was blocked in the mammary gland and uterus, while EM-652 protected bone and decreased serum lipids. Since EM-652 has little or no access to the brain, it should not prevent estrogen from exerting its beneficial effects on hot flashes, memory and cognition and potentially preventing Alzheimer's disease. At the same time, EM-652 blocks the negative effects of estrogen in the peripheral tissues, including the mammary gland and uterus.

"EM-652 in combination with estrogen may offer a novel approach to treating postmenopausal women," explained Dr. Labrie. "If our findings in rats are duplicated in women, this tissue-specific hormone replacement therapy could meet the most important needs of women at menopause, which include control of hot flashes, improvement of cognitive function and memory, decreased risk of Alzheimer's disease and, most importantly, the prevention of three serious cancers-breast, ovarian and uterine-as well as bone loss."

Endocrinology is one of four journals published by The Endocrine Society.
-end-
Founded in 1916, The Endocrine Society is the world's oldest, largest, and most active organization devoted to research on hormones, and the clinical practice of endocrinology. Endocrinologists are specially trained doctors who diagnose, treat and conduct basic and clinical research on complex hormonal disorders such as diabetes, thyroid disease, osteoporosis, obesity, hypertension, cholesterol and reproductive disorders.

Today, The Endocrine Society's membership consists of over 11,000 scientists, physicians, educators, nurses and students, in more than 80 countries. Together, these members represent all basic, applied, and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland.

To learn more about the Society, and the field of endocrinology, visit the Society's Web site at http://www.endo-society.org.

The Endocrine Society

Related Ovarian Cancer Articles from Brightsurf:

Ovarian cancer cells cooperate to metastasize
In a study on human ovarian cancer cells in mice, Harvard Medical School researchers discovered a transient, cooperative interaction between cell subpopulations that allows otherwise nonmetastatic tumor cells to become aggressive and spread.

Photodynamic therapy used to treat ovarian cancer
Photodynamic therapy (PDT) is one of the most promising methods of treating localized tumors.

Studying the development of ovarian cancer with organoids
Researchers from the group of Hans Clevers at the Hubrecht Institute have modeled the development and progression of high-grade serous ovarian cancer in mini-versions, or organoids, of the female reproductive organs of the mouse.

New class of drugs could treat ovarian cancer
A team of researchers across the University of Manchester have shown that a new class of drugs are able to stop ovarian cancer cells growing.

How to catch ovarian cancer earlier
Ovarian cancer is often diagnosed too late for effective treatment.

New compound could help treat ovarian cancer
Scientists from the University of Sheffield have discovered a compound that could be more effective in treating certain cancers than standard chemotherapy.

Epigenetic markers of ovarian cancer
Insilico Medicine and its collaborators from Johns Hopkins and Insilico Medicine, used an integrated approach by coupling identification of genome-wide expression patterns in multiple cohorts of primary ovarian cancer samples and normal ovarian surface epithelium with innovative computational analysis of gene expression data, leading to the discovery of novel cancer-specific epigenetically silenced genes.

Ovarian cancer statistics, 2018
A new report from the American Cancer Society provides an overview of ovarian cancer occurrence and mortality data.

Ovarian cancer drug shows promise in pancreatic cancer patients with BRCA mutation
A targeted therapy that has shown its power in fighting ovarian cancer in women including those with BRCA1 and BRCA2 mutations may also help patients with aggressive pancreatic cancer who harbor these mutations and have few or no other treatment options.

TGen-led study finds potent anti-cancer drug effect in rare ovarian cancer
An anti-cancer drug used to fight leukemia shows promise against a rare and aggressive type of ovarian cancer -- small cell carcinoma of the ovary hypercalcemic type (SCCOHT) -- which strikes young women and girls, according to a study led by the TGen.

Read More: Ovarian Cancer News and Ovarian Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.