'TRAP' preserves genetic properties of popular geranium

November 05, 2007

COLUMBUS, OH -- Reseachers at The Ohio State University have demonstrated that Target Region Amplification Polymorphism, or TRAP, is an effective method for preserving the important genetic diversity of ornamental flower collections.

Pelargonium, commonly know as geranium, are some of the most popular flowers the world. So popular, in fact, that the Royal Horticultural Society listed more than 3,000 varieties of geranium in their 2004 distribution catalogue. Sold in hanging baskets, flats and decorative pots, geranium plants accounted for more than $206 million in wholesale revenue in the U.S. during 2004. Essential oils from some scented geraniums are finding new uses in perfumes and food flavorings.

There are over 280 documented species of Pelargonium. The interest in breeding has resulted in many novel and improved cultivars. According to Rose Palumbo, Department of Plant Pathology at The Ohio State University (OSU), ornamental plants like the geranium are often bred for their ornamental qualities rather than their ability to survive in diverse environments.

Palumbo and a team of researchers recently completed a study of Pelargonium grown at The Ornamental Plant Germplasm Center (OPGC) at Ohio State. OPGC collects heirloom cultivars, breeding lines and wild species.

Intending to find a way to preserve the genetic diversity of Pelagonium, the team tested a method known as Target Region Amplification Polymorphism, or TRAP. Palumbo explained, "The TRAP method uses molecuar markers targeted to a specific gene. Target sequences that have been generally successful in most plants tested the applicability of this method to OSU's geranium collection. Using TRAP allowed us to divide the population into groups of similiar species and groups known to share parents."

Palumbo continued, "TRAP has the advantage of producing a large number of markers through use of sequence information that is already available. Our first goal was to determine the feasibility of TRAP for the analysis of this large collection, so that in the future the most diverse genotypes may be retained. To achieve this goal, we first modified existing DNA extraction techniques to account for the high levels of phenolic compounds present in some Pelargonium species. Second, we evaluated the TRAP procedure using the DNA isolated from 46 accessions. Based on these results, the molecular analysis of the collection was completed, and the collection has decreased in size by approximately 25%. Continuing analyses should shrink the collection from approximately 800 plants to close to 200 plants by the end of this year."

Using the TRAP method will allow the OPGC to streamline their collection of geraniums into a much more manageable size. According to Palumbo, the smaller collection will be more efficient to maintain, while still providing the diverse genetic resources needed by breeders and researchers.
-end-
The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/42/5/1118/

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education and application. More information at ashs.org

American Society for Horticultural Science

Related Genetic Diversity Articles from Brightsurf:

In the Cerrado, topography explains the genetic diversity of amphibians more than land cover
Study shows that a tree frog endemic to a mountainous region of the Brazilian savanna is unable to disperse and find genetically closer mates when the terrain is rugged, potentially endangering survival of the species

New DNA sequencing technique may help unravel genetic diversity of cancer tumors
Understanding the genetic diversity of individual cells within a cancer tumor and how that might impact the disease progression has remained a challenge, due to the current limitations of genomic sequencing.

Researchers uncover the arks of genetic diversity in terrestrial mammals
Mapping the distribution of life on Earth, from genes to species to ecosystems, is essential in informing conservation policies and protecting biodiversity.

Seahorse and pipefish study by CCNY opens window to marine genetic diversity May 08, 2020
The direction of ocean currents can determine the direction of gene flow in rafting species, but this depends on species traits that allow for rafting propensity.

Study helps arboreta, botanical gardens meet genetic diversity conservation goals
In a groundbreaking study, an international team of 21 scientists evaluated five genera spanning the plant tree of life (Hibiscus, Magnolia, Pseudophoenix, Quercus and Zamia) to understand how much genetic diversity currently exists in collections in botanical gardens and arboreta worldwide.

Study reveals rich genetic diversity of Vietnam
In a new paper, Dang Liu, Mark Stoneking and colleagues have analyzed newly generated genome-wide SNP data for the Kinh and 21 additional ethnic groups in Vietnam, encompassing all five major language families in MSEA, along with previously published data from nearby populations and ancient samples.

Coastal pollution reduces genetic diversity of corals, reef resilience
A new study by researchers at the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology found that human-induced environmental stressors have a large effect on the genetic composition of coral reef populations in Hawai'i.

New world map of fish genetic diversity
An international research team from ETH Zurich and French universities has studied genetic diversity among fish around the world for the first time.

Texas A&M study reveals domestic horse breed has third-lowest genetic diversity
A new study by Dr. Gus Cothran, professor emeritus at the Texas A&M School of Veterinary Medicine & Biomedical Sciences, has found that the Cleveland Bay horse breed has the third-lowest genetic variation level of domestic horses, ranking above only the notoriously inbred Friesian and Clydesdale breeds.

Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.

Read More: Genetic Diversity News and Genetic Diversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.