A sex-ratio meiotic drive system in Drosophila simulans

November 05, 2007

If you met a person who had 10 children, all of whom were girls, you would probably find this surprising. Yet this kind of distorted sex ratio does occur in groups as diverse as mammals, insects, and plants, where some parents consistently produce litters in which the sex ratio is dramatically skewed. For the first time, Yun Tao and colleagues report, in this week's issue of the open-access journal PLoS Biology, the identification of both a fly gene that can create these skewed ratios and the counter-gene, found in most of the fly population, which suppresses such distortion.

Skewed sex ratios, such as the one investigated by Tao and colleagues at Harvard and Emory Universities, have been known to evolutionary biologists for a long time. They usually occur because genes on the X chromosome "prefer" an individual to have female offspring, as daughters will have two copies of X chromosome genes compared to one in sons, and more copies of a gene mean evolutionary success for that gene. This sets up a conflict within the genome, as genes on the other chromosomes may lose out through being passed on to an all female litter. When there is a skew towards one sex, being a gene in a member of the other sex is very advantageous, as the rare sex will have lots of opportunities to reproduce. This makes finding a gene on the non-sex chromosomes that counters the distortion evolutionarily likely.

The mystery of the sex ratio skew was in how it worked on a molecular and genetic level. This paper is the first to map a distorting gene, Dox, found on the X chromosome in Drosophila simulans, and Nmy, the suppressor gene found on a non-sex chromosome that "fights back" for an equal sex ratio. Interestingly, the new paper reports that Dox and Nmy are very similar in terms of their sequence. This provides Tao et al. with a clue towards how Nmy may defeat Dox--a mechanism called RNA interference (RNAi). RNAi can "turn off" a gene--just like Nmy does to Dox--when one gene produces RNA that is complementary in sequence to that of another. On a physiological level, Tao et al. showed that males who have offspring with a distorted sex ratio do so because their Y-bearing sperm fail to mature successfully. The findings in this paper also suggest that the evolution of the genome will one day be explained as adaptations to limit sex ratio distortion.
-end-
Citation: Tao Y, Masly JP, Araripe L, Ke Y, Hartl DL (2007) A sex-ratio meiotic drive system in Drosophila simulans. I: An autosomal suppressor. PLoS Biol 5(11): e292. doi:10.1371/journal.pbio.0050292

Citation: Tao Y, Araripe L, Kingan SB, Ke Y, Xiao H, et al. (2007) A sex-ratio meiotic drive system in Drosophila simulans. II: An X-linked distorter. PLoS Biol 5(11): e293. doi:10.1371/journal.pbio.0050293

CONTACT:

Yun Tao
Emory University
Atlanta, GA 30322
404-727-0815
ytao3@emory.edu

PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES AND PROVIDE A LINK TO THE FREELY-AVAILABLE TEXT. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available--to read, download, redistribute, include in databases, and otherwise use--without cost to anyone, anywhere, subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Chromosome Articles from Brightsurf:

The bull Y chromosome has evolved to bully its way into gametes
In a new study, published Nov. 18 in the journal Genome Research, scientists in the lab of Whitehead Institute Member David Page present the first ever full, high-resolution sequence of the Y chromosome of a Hereford bull.

Evolution of the Y chromosome in great apes deciphered
New analysis of the DNA sequence of the male-specific Y chromosomes from all living species of the great ape family helps to clarify our understanding of how this enigmatic chromosome evolved.

The male Y chromosome does more than we thought
While the Y chromosome's role was believed to be limited to the functions of the sexual organs, an University of Montreal's scientist has shown that it impacts the functions of other organs as well.

The birth of a male sex chromosome in Atlantic herring
The evolution of sex chromosomes is of crucial importance in biology as it stabilises the mechanism underlying sex determination and usually results in an equal sex ratio.

Why the 'wimpy' Y chromosome hasn't evolved out of existence
The Y chromosome has shrunken drastically over 200 million years of evolution.

Novel insight into chromosome 21 and its effect on Down syndrome
A UCL-led research team has, for the first time, identified specific regions of chromosome 21, which cause memory and decision-making problems in mice with Down syndrome, a finding that provides valuable new insight into the condition in humans.

Breakthrough in sex-chromosome regulation
Researchers at Karolinska Institutet in Sweden have uncovered a chromosome-wide mechanism that keeps the gene expression of sex chromosomes in balance in our cells.

B chromosome first -- mechanisms behind the drive of B chromosomes uncovered
B chromosomes are supernumerary chromosomes, which often are preferentially inherited and showcase an increased transmission rate.

Unveiling disease-causing genetic changes in chromosome 17
Extensive single Watson-Crick base pair mutations can occur in addition to duplication or deletion of an entire group of genes on chromosomal region 17p11.2.

What causes rats without a Y chromosome to become male?
A look at the brains of an endangered spiny rat off the coast of Japan by University of Missouri (MU) Bond Life Sciences Center scientist Cheryl Rosenfeld could illuminate the subtle genetic influences that stimulate a mammal's cells to develop as male versus female in the absence of a Y chromosome.

Read More: Chromosome News and Chromosome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.