Risk assessment tool not reliable predictor for some women at high risk of breast cancer

November 05, 2008

ROCHESTER, Minn. -- A statistical model commonly used to predict the risk of breast cancer in women was not accurate when used to evaluate women with atypical hyperplasia, according to a new Mayo Clinic study published in the Oct. 14, 2008, issue of the Journal of Clinical Oncology. Atypical hyperplasia (atypia) describes breast tissue with an increased growth of abnormal cells that might become cancerous.

The Gail model calculates probabilities that a woman will develop invasive breast cancer during the next five years, and by age 90. The model has come to be called by the name of its developer, National Cancer Institute researcher Mitchell Gail, M.D., Ph.D. Its original purpose was to identify groups of high-risk women for participation in breast cancer chemoprevention studies. But the model has since been used in clinical settings to counsel individuals about their risk of developing breast cancer. Predicting risk at an individual level is much more challenging than when risks can be averaged across groups.

"The assumption has always been that this model works well in women with atypia, but this had never been validated," says Shane Pankratz, Ph.D., Mayo Clinic statistician and a lead investigator in the study. "We found that, for the group of women with atypia, the model predicted significantly fewer invasive breast cancers than were actually observed, and we also observed that the model was not able to reliably identify the women who were actually at higher risk of developing breast cancer."

The Gail model considers the woman's family history of breast cancer, her age, and her ages at the onset of menstruation and at first live birth, as well as the number of breast biopsies undergone and presence of atypical hyperplasia found in biopsies. About 5 percent of women who undergo biopsies for suspicious lumps or other breast concerns have atypia. About 25 percent of those with atypia will develop cancer within 25 years.

Mayo Clinic researchers tested the Gail model in 331 women with atypia who had benign breast biopsies at Mayo Clinic between 1967 and 1991. Of these women, 58 developed cancer during an average of 13.7 years of follow-up. In contrast, the model predicted that 34.9 women would develop breast cancer in that period.

Using these and other data, researchers also calculated the model's performance for individuals using the concordance statistic (c-statistic), which reflects how closely the actual timing of breast cancer events aligned with model predictions. A c-statistic of 0.5 is observed if the predictions are no better than random chance; a c-statistic of 1.0 is observed if the predictions are perfectly concordant with the actual outcomes. In this study, the c-statistic was 0.5, reflecting that the Gail model worked no better than a coin flip in predicting which of the women with atypia would develop invasive breast cancer.

When assessed across other groups of women without respect to the presence of atypia, the Gail model typically performs better. In that setting, it has been shown to predict approximately the same number of breast cancers that later occur.

Lynn Hartmann, M.D., Mayo Clinic oncologist and co-investigator on the study, says that there is strong interest in predicting breast cancer risk. For example, the Gail model, posted on the National Cancer Institute's Web site (http://www.cancer.gov/bcrisktool/), attracts 25,000 viewers each month.

"Doctors counsel women at high risk to have more frequent or intensive surveillance or to consider chemoprevention strategies such as tamoxifen or raloxifene," says Dr. Hartmann. "When making such decisions, women and their physicians must have highly reliable risk estimates."

Researchers are pursuing other avenues to better predict individual risk. Previously, Mayo Clinic researchers found that women with multiple sites of cellular atypia in a breast biopsy have significantly increased risk of developing breast cancer. In a study published earlier this year, Mayo researchers found that women whose atypia tissues express COX-2 enzymes were more likely to develop breast cancer, and the higher the COX-2 levels, the higher the risk.
-end-
Other Mayo Clinic researchers involved in this study were Judy Boughey, M.D.; Amy Degnim, M.D.; Robert Vierkant; Karthik Ghosh, M.D.; Celine Vachon, Ph.D.: Marlene Frost, Ph.D.; Shaun Maloney and Carol Reynolds, M.D.

To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories. For more on Mayo Clinic research, go to www.mayo.edu.

Mayo Clinic

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.