German high-school students involved in an astronomical research project

November 05, 2009

This week, Astronomy & Astrophysics publishes a somewhat unusual research article because it is co-authored by German high-school students. Led by astronomer Klaus Beuermann (University of Göttingen, Germany), the team [1] involves a secondary school physics teacher, three students from two high schools in Göttingen [2], and three professional astronomers. The team made use of a remotely-controlled 1.2-meter telescope in Texas [3], funded by the Alfried Krupp von Bohlen und Halbach Foundation for the expressed purpose of making such resources available to schools as well as professional astronomers. The students, S. Paik, A.-M. Ploch, and J. Zachmann, and their teacher, J. Diese, observed the light variations of the faint (19th magnitude) cataclysmic variable EK Ursae Majoris (EK UMa) over two months.

Cataclysmic variable research is a field where the contributions of small telescopes has a long tradition. Cataclysmic variables are extremely close binary systems containing a low-mass star whose material is being stripped off by the gravitational pull of a white dwarf companion. Due to the transfer of matter between the stars, these systems vary dramatically in brightness on timescales in the whole range between seconds and years. This largely unpredictable variability makes them ideal targets for school projects, particularly since professional observatories are generally unable to provide enough observation time for regular monitoring.

An accurate ephemeris is needed to keep track of the orbital motions of the two stars, but none was available because EK UMa is faint in the optical range and requires a long-term observation of the light variations. The strong magnetic field of the white dwarf turns the light of the hot matter striking the surface of the white dwarf into two "lighthouse" beams. By measuring the times of the minimum between the beams, the group was able to determine an orbital period accurate enough to keep track of the eclipse that took place in 1985, over 100 000 cycles earlier. By combining their own measurements with those made by the Einstein, ROSAT, and EUVE satellites, they estimated the orbital period over 137 000 cycles to an accuracy of a tenth of a millisecond. Surprisingly, the orbital period is extremely stable, although the period of such very close binaries is expected to vary due to the presence of third bodies and magnetic activity cycles on the companion star.

The pupils were involved in the various tasks of the research project: observations, analysis of the CCD images, production and interpretation of light curves, and access to the archival satellite data. They participated in all the steps of a real research program, from initial observations to the publication process, and the result they obtained bears scientific significance. Team leader K. Beuermann concluded: "Although it is fun to perform one's own remote observations with a professional telescope from the comfort of a normal school classroom, it is even more satisfying to be involved in a project that provides new and publishable results rather than to perform experiments with predictable outcomes."
-end-
[1] The team includes a secondary school physics teacher, Jens Diese, three 12th grade pupils, Sang Paik, Alexander-Maria Ploch, and Joschua Zachmann, and three professional astronomers, Klaus Beuermann, Frederic Hessman (Univ. Göttingen), and Axel Schwope (AIP, Postdam).

[2] Max-Planck-Gymnasium/Göttingen, Felix-Klein-Gymnasium/Göttingen

[3] The telescope used for this project is operated by the Univ. of Göttingen, the Univ. of Texas at Austin, and the South African Astron. Obs.

Astronomy & Astrophysics

Related White Dwarf Articles from Brightsurf:

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

A white dwarf's surprise planetary companion
For the first time, an intact, giant exoplanet has been discovered orbiting close to a white dwarf star.

KU astronomer helps confirm first-ever planet found orbiting white dwarf
A University of Kansas astronomer played a key role on the team that today announced the first-ever discovery of a planet orbiting a white dwarf.

HKU's Laboratory for Space Research member co-discovers first planet found around white dwarf star
An international team of astronomers led by the University of Wisconsin-Madison, including NASA co-authors, and Thomas G.

Experiments replicate high densities in 'white dwarf' stars
In a project conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, a research team including University of Rochester engineering professor Gilbert (Rip) Collins, simulated the crushing pressure created as white dwarf stars cease to produce their own fuel, leaving only an extremely dense core.

Measuring the wind speed on a brown dwarf
Strong winds blow high in the atmosphere of the brown dwarf 2MASS J1047+21, according to a new study, which presents a simple method to deduce the windspeed in other brown dwarf atmospheres, too.

Astronomers measure wind speed on a brown dwarf
Using VLA and Spitzer observations, astronomers are able to determine wind speeds on a brown dwarf for the first time.

Observed: An occultation of a brown dwarf by another
An international team of astronomers in the project SPECULOOS, dedicated to the search for habitable planets, with scientists participating from the Instituto de Astrofísica de Canarias (IAC) has discovered an eclipse (termed an occultation) in a peculiar brown dwarf formed by two stars orbiting around each other.

Two stars merged to form massive white dwarf
A massive white dwarf star with a bizarre carbon-rich atmosphere could be two white dwarfs merged together according to an international team led by University of Warwick astronomers, and only narrowly avoided destruction.

Pulsar-white dwarf binary system confirms general relativistic frame-dragging
A century after it was first theorized, researchers have detected the effects of Lense-Thirring precession -- an effect of relativistic frame-dragging -- in the motion of a distant binary star system, a new study reports.

Read More: White Dwarf News and White Dwarf Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.