UTSA biology professor awarded $300,000 NSF grant for brain research

November 05, 2014

Fidel Santamaria, associate professor of biology in the UTSA College of Sciences, is one of 36 researchers in the nation selected to receive a two-year $300,00 National Science Foundation (NSF) Early Concept Grant for Exploratory Research (EAGER). The funding supports President Obama's BRAIN Initiative, a federal effort to support researchers to create new technology that will demystify complex brain processes.

According to Santamaria, complex behaviors in neuroscience are broken into the interactions of multiple components, each working in its own characteristic temporal framework. However, in many cases an in-depth look at the data reveals that mechanisms at one scale are strongly influenced by the activity of the system at all scales of analysis. As a result, the system cannot be separated into independent components and traditional analysis techniques cannot provide an appropriate description of how the system works. In such cases, the activity of a system follows a mathematical formula known as a power-law.

The team lead by Santamaria is hypothesizing that the same power-law framework that he has used to study biophysical processes at the cellular and sub-cellular level in neurons can be applied to study complex animal and human activity. This framework has the potential to transform traditional approaches to understanding brain networks, and to impact experimental design, data analysis, and the mechanistic interpretation of experimental results.

Santamaria and his colleagues will use the grant to build computational tools to analyze and model power-law dynamics at multiple scales of interest in neuroscience, from molecules to behavior. The team will build a computational toolbox using state-of-the-art algorithms and computational resources at UTSA and at the Texas Advanced Computer Center in Austin.

The toolbox will be able to process Big Data streams generated by different types of neuroscience experiments, from those that record the electrical activity of single neurons, to the production of complex motor activity in animals. Santamaria will also use a little used branch of mathematics known as fractional differential equations. Together, the computational and theoretical infrastructure will be made available to all neuroscientists to analyze and model their results.

To conduct the research, Santamaria will collaborate with Todd Troyer and Nicole Wicha, both associate professors in the UTSA Department of Biology.

Troyer, an expert in songbird research, will monitor songbirds from birth to maturity to discover how the birds learn to construct their songs from scales ranging from individual sounds to long sequences of songbird 'syllables'."

"Birds learn their song by imitating adults, similar to how humans learn to speak," said Troyer.

Wicha's expertise is in the brain basis of language comprehension. She will record electroencephalograms (EEGs), which measure changes in brain activity on the order of milliseconds, while volunteers perform a language comprehension task. She will then repeat the test multiple times over a one-month period, allowing the team to study changes in brain activity at multiple time scales.

The two laboratories will generate Big Data streams in which temporal correlations can be measured on a wide range of timescales. Data from these labs will serve as test beds and incubators for applying power-law dynamic analysis and modeling concepts at multiple levels of biological organization in the brain.

"This research is a combination of theoretical and experimental work," said Santamaria. "We will watch a bird sing, analyze the data and put it into a theoretical context. We will look at how humans process language. We have tools that work from the statistical point of view all the way to the theoretical differential equations. This research is an example of how biology is changing into a field in which theory and experiments can be done in the same place."
-end-
To learn more about UTSA neuroscience research, visit the UTSA Neurosciences Institute website at http://neuroscience.utsa.edu.

Connect online with UTSA at http://www.facebook.com/utsa, http://www.twitter.com/utsa, http://www.youtube.com/utsa and http://www.utsa.edu/today.

About UTSA

The University of Texas at San Antonio (UTSA) is an emerging Tier One research institution specializing in health, energy, security, sustainability, and human and social development. With nearly 29,000 students, it is the largest university in the San Antonio metropolitan region. UTSA advances knowledge through research and discovery, teaching and learning, community engagement and public service. The university embraces multicultural traditions and serves as a center for intellectual and creative resources as well as a catalyst for socioeconomic development and the commercialization of intellectual property - for Texas, the nation and the world.

University of Texas at San Antonio

Related Brain Activity Articles from Brightsurf:

Inhibiting epileptic activity in the brain
A new study shows that a protein -- called DUSP4 -- was increased in healthy brain tissue directly adjacent to epileptic tissue.

What is your attitude towards a humanoid robot? Your brain activity can tell us!
Researchers at IIT-Istituto Italiano di Tecnologia in Italy found that people's bias towards robots, that is, attributing them intentionality or considering them as 'mindless things', can be correlated with distinct brain activity patterns.

Using personal frequency to control brain activity
Individual frequency can be used to specifically influence certain areas of the brain and thus the abilities processed in them - solely by electrical stimulation on the scalp, without any surgical intervention.

Rats' brain activity reveals their alcohol preference
The brain's response to alcohol varies based on individual preferences, according to new research in rats published in eNeuro.

Studies of brain activity aren't as useful as scientists thought
Hundreds of published studies over the last decade have claimed it's possible to predict an individual's patterns of thoughts and feelings by scanning their brain in an MRI machine as they perform some mental tasks.

A child's brain activity reveals their memory ability
A child's unique brain activity reveals how good their memories are, according to research recently published in JNeurosci.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.

Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.

Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.

Read More: Brain Activity News and Brain Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.