Nav: Home

Researchers show how positive stimuli provide benefits to the distracted brain

November 05, 2015

You're walking up your driveway, laden down with groceries, your cell phone glued to your ear. Your mother has just shared your elderly aunt's phone number, and you're repeating it as you walk to the door of your house. Suddenly a stray dog, barking and snarling, races across the lawn. Are you able to remember the number?

Rewind the situation and, instead of the barking dog, see a cute puppy bounding across the yard. Do you remember the number now?

Researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign are investigating how your brain processes distractions when you're trying to get a job done.

Their paper, "Brain Activity and Network Interactions Linked to Valence-Related Differences in the Impact of Emotional Distraction," was recently published in Cerebral Cortex.

According to Alexandru Iordan, graduate student in neuroscience and co-author of the paper, most studies have concentrated on how negative distractions (the barking dog) impact our ability to complete a task. But few studies have focused on how positive distractions (the cute puppy) impact that ability.

"We knew from previous investigations that negative distractions interfere with our ability to stay focused on the task at hand," said Iordan. "However, we didn't know what happens with positive distractions in terms of performance and the brain mechanisms."

The research, led by Florin Dolcos, assistant professor of psychology at Illinois and member of Beckman's Cognitive Neuroscience Group, not only investigated the difference between positive and negative distractions, but also used the MRI machines at the Biomedical Imaging Center (BIC) in the Beckman Institute to evaluate how the brain responds during these distractions.

Study participants were shown a series of images of people's faces and were asked to hold them in mind for a few seconds. After a short delay, they were asked to indicate if they had seen specific faces or not. During the delay, the participants were shown a mixture of positive, neutral, and negative images; the negative and positive images were selected to produce overall similarly intense responses.

The brain responses were recorded to evaluate which parts of the brain were activated when the distracting images were shown.

The findings indicate that both positive and negative images affect the brain, but that positive distractions are linked to increased performance, compared with negative distraction. In other words, seeing the cute puppy grabs your attention, but will not interfere with completing the task at hand (remembering your aunt's phone number).

"The main result is that the positive distractions do not interfere with working memory performance," said Iordan, "in fact, they actually help compared to the negative distractions, even though they may produce equally intense emotional responses."

The explanation for this lies in the way our brains are hard-wired. "Positive stimuli are less imperative than the negative ones, because the immediate costs of not paying attention to them are typically smaller. For instance, evolutionarily, not paying attention to a potential food source is usually less dramatic than not paying attention to something dangerous, like a predator," said Dolcos.

Consistent with this idea, the study found changes in two brain regions that are involved in working memory and attention, the dorso-lateral prefrontal and the lateral parietal cortices.

"These areas stay in tune with each other when we try to keep information active in our mind," Iordan explained.

"Negative distractions strongly reduced activity in these regions. However, positive distractions had less impact on activity in these regions and increased activity in the ventro-lateral prefrontal cortex, an area associated with emotion control. This may explain why we perform better under positive distraction -- because those distractions have less detrimental effects in brain areas involved in the ability to stay focused on the tasks at hand, and they increase activity in areas that are helping us to cope with distraction," said Iordan.

Another brain region, the medial prefrontal cortex, also showed responses consistent with this difference in urgency between positive and negative stimuli. "The medial prefrontal cortex is involved in emotion and self-referential processing. Here, we've seen that the responses to the negative stimuli occurred slightly earlier than the responses to the positive ones," added Iordan.

The effects were visible also in the way these different brain regions communicated with each other. "One fascinating thing about the brain is that the same region may behave differently in different contexts," said Iordan. "It's not only about what a brain region itself does, but also about how a brain region communicates with other regions in specific contexts -- and this influences our behavior."

The researchers found that the medial prefrontal and the lateral parietal cortices behaved differently when subjects viewed negative as opposed to positive distractors.

"We found that the medial prefrontal cortex communicated more with the lateral parietal cortex under negative distraction. This increased communication does not usually happen during such tasks, because these two regions are part of different brain networks. This might also explain why negative stimuli were more impairing to working memory performance," said Iordan.

By identifying the activity in these regions, the researchers hope that they can develop methods to help those who have emotional disorders such as anxiety or depression. Dolcos hopes that future research will create training to change the response of these areas of the brain, in order to prevent clinical depression and anxiety.

"These areas, together with others identified in our research, could be used as markers to be monitored in interventions that target improved responses that reduce the impact of emotional challenges," said Dolcos. "It is important to find such markers for both positive and negative emotions, because they are both changed in depression and anxiety, which are characterized by increased sensitivity to negative emotions and reduced response to positive emotions.

"At the end of the day, we want to find ways to help people feel good. That's why we work on both aspects, enhance the positive and reduce the negative emotions, to stay healthy. Also, a lot of what we do in our research is about prevention. We can identify such markers in people who are healthy but might be at risk, and then target these markers in interventions. We all know that, in the long run, we are better off also preventing than intervening only when people are already sick. This is also the case with emotional disorders, such as depression and anxiety" Dolcos said.

-end-

For more information: Florin Dolcos, fdolcos@illinois.edu; Alexandru Iordan, iordan2@illinois.edu, and the Dolcos Lab: http://dolcoslab.beckman.illinois.edu/

Beckman Institute for Advanced Science and Technology
Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.