Nav: Home

Circadian clock controls insulin and blood sugar in pancreas

November 05, 2015

  • Clock genes in pancreas produce proteins in rhythm with the planet's daily rotation from light to dark
  • Clocks operating in cells are fundamental to health
  • When clocks are disrupted, metabolic disorders can develop

CHICAGO --- A new Northwestern Medicine study has pinpointed thousands of genetic pathways an internal body clock takes to dictate how and when our pancreas must produce insulin and control blood sugar, findings that could eventually lead to new therapies for children and adults with diabetes.

The body's circadian clocks coordinate behaviors like eating and sleeping, as well as physiological activity like metabolism, with the Earth's 24-hour light-dark cycle. There's a master clock in the brain, as well as peripheral clocks located in individual organs. When genetics, environment or behavior disrupt the synchrony of these clocks, metabolic disorders can develop.

In a previous publication in Nature, Northwestern Medicine investigators showed that a circadian clock in the pancreas is essential for regulating insulin secretion and balancing blood sugar levels in mice. The scientists demonstrated that knocking out clock genes led to obesity and type 2 diabetes, but they still had much to learn if they wanted to manipulate clock action to treat the conditions.

"We knew that the pancreas didn't work if we removed these clock genes, but we didn't know how the genes were affecting the normal function of the pancreas," said principal investigator Dr. Joe Bass, chief of endocrinology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine physician.

Clock genes are responsible for producing transcription factors, special proteins that help tell a cell how to function.

In the new study, published Nov. 6 in Science, Bass's laboratory revealed thousands of genes in the pancreas that the clock's transcription factors control in rhythm with the planet's daily rotation from light to dark.

"We established a new gene map that shows how the entire repertoire of factors produced in the pancreas maintain and anticipate daily changes in the external environment," Bass said. "These factors are all tied to the rotation of the Earth -- to the timekeeping mechanism that has evolved to control when we sleep, wake up, eat and store nutrients each day."

Bass's team focused on cells in the pancreas called beta cells, which secrete insulin into the blood stream to help the body absorb glucose -- sugar -- to use for energy. Using genome-wide sequencing technology on beta cells with both intact and disrupted clock gene function, the scientists were able to lay out the map of transcription factors and genes.

In ongoing research, Bass's group continues to study how the body's circadian clocks interact and how their rhythm is thrown off -- not just in diabetes, but also during the normal aging process and from day-to-day conditions like jetlag, stress or dietary changes.

"This study reinforces the idea that clocks operating in cells are fundamental to health," Bass said. "They represent an important untapped target for improving the functions of cells in the pancreas."
-end-
Bass is also the Charles F. Kettering Professorship of Medicine at Feinberg. Other Northwestern authors include Dr. Grant Barish, Mark Perelis, Biliana Marcheva, Kathryn Ramsey, Clara Bien Peek, Hee-kyung Hong, Matthew Schipma, Dr. Akihiko Taguchi, Dr. Wenyu Huang, Chiaki Omura and Amanda Allred.

This study was supported by National Institutes of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant R01DK090625, NIH National Institute on Aging grant P01AG011412, the Chicago Biomedical Consortium S-007, Juvenile Diabetes Research Foundation grants 17-2013-511, 1-INO-2014-178-A-V and 1-INO-2015-23-A-V, University of Chicago Diabetes Research and Training Center grant P60DK020595; NIDDK T32 grant DK007169; National Heart, Lung, and Blood Institute T32 grant HL007909 and Defense Advanced Research Projects Agency grant D12AP00023.

NORTHWESTERN NEWS: http://www.northwestern.edu/newscenter/

Northwestern University

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...