Nav: Home

Watching a memory form

November 05, 2015

Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered that some neurons are joiners -- seemingly eager to link-up with networks in which learning is taking place.

The findings, which will appear this week in the journal Current Biology, have implications for how brain networks can rapidly adjust to build memories.

"In a prior study, we discovered neurons, whose participation in networks varies on a moment-to-moment basis, displaying a surprising ambivalence about their commitment to the network's function," said William Frost, PhD, professor and chair of the Chicago Medical School Department of Cell Biology and Anatomy. "At the time, we didn't know why the nervous system would contain neurons that behave this way. Here we find that such variably-affiliated neurons appear to be pre-positioned for rapid recruitment into memories."

The discovery represents a shift from the field's long-term focus on synaptic plasticity -- changes in the strength of the connections between neurons in response to learning -- toward a view that certain neurons have characteristics that predispose them to join memories.

The study, which examined neural networks in the sea slug Tritonia, went on to track the same neurons as the memory faded, and found that the network didn't simply return to its pre-training state. Instead, many of the new neurons stayed with the network and some of the original neurons departed. So even though all behavioral evidence of learning was gone, the network was left in an altered state, possibly revealing the presence of a latent memory.

In a key experiment, the team isolated a potential mechanism driving memory formation. Driving two specific neurons in the same way they fire during learning, researchers implanted a false memory.

"The animal displayed a learned response, even though it had no actual experience," said Evan Hill, PhD, the study's lead author.

Insights into the mechanisms controlling neuron reassignment could contribute to the development of new strategies for nudging neurons into functional circuits following brain injury, Frost said.
-end-


Rosalind Franklin University of Medicine and Science

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.