Nav: Home

Watching a memory form

November 05, 2015

Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered that some neurons are joiners -- seemingly eager to link-up with networks in which learning is taking place.

The findings, which will appear this week in the journal Current Biology, have implications for how brain networks can rapidly adjust to build memories.

"In a prior study, we discovered neurons, whose participation in networks varies on a moment-to-moment basis, displaying a surprising ambivalence about their commitment to the network's function," said William Frost, PhD, professor and chair of the Chicago Medical School Department of Cell Biology and Anatomy. "At the time, we didn't know why the nervous system would contain neurons that behave this way. Here we find that such variably-affiliated neurons appear to be pre-positioned for rapid recruitment into memories."

The discovery represents a shift from the field's long-term focus on synaptic plasticity -- changes in the strength of the connections between neurons in response to learning -- toward a view that certain neurons have characteristics that predispose them to join memories.

The study, which examined neural networks in the sea slug Tritonia, went on to track the same neurons as the memory faded, and found that the network didn't simply return to its pre-training state. Instead, many of the new neurons stayed with the network and some of the original neurons departed. So even though all behavioral evidence of learning was gone, the network was left in an altered state, possibly revealing the presence of a latent memory.

In a key experiment, the team isolated a potential mechanism driving memory formation. Driving two specific neurons in the same way they fire during learning, researchers implanted a false memory.

"The animal displayed a learned response, even though it had no actual experience," said Evan Hill, PhD, the study's lead author.

Insights into the mechanisms controlling neuron reassignment could contribute to the development of new strategies for nudging neurons into functional circuits following brain injury, Frost said.
-end-


Rosalind Franklin University of Medicine and Science

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...