Immunologists unearth key piece of MRSA vaccine puzzle

November 05, 2015

Dublin, Ireland, November 5th, 2015 - Immunologists from Trinity College Dublin have unearthed a key piece of the MRSA vaccine puzzle by identifying specific 'helper' cells whose role in the immune response is critical in affecting infection outcomes.

The immunologists were able to develop a model vaccine, which targeted these 'T-helper type 1' cells, and then showed experimentally that its use led to improved infection outcomes.

Assistant Professor in Immunology at Trinity, Dr Rachel McLoughlin, said: "To design an effective vaccine it is imperative you know how a bacterium interacts with its host. By screening patients with Staphylococcus aureus blood stream infections we were able to isolate key players in the immune system that dealt with these infections and then designed a model vaccine that effectively sparked them into action."

The World Health Organisation (WHO) warns of an impending "post-antibiotic era," with the potential to undermine modern medicine. Anti-microbial resistance is a global crisis that demands the development of new antimicrobials, but developing alternatives to antibiotics such as vaccines would prevent infection in the first place.

The bacterium S. aureus is a major cause of healthcare-associated infections, and blood stream infections caused by S. aureus are associated with significant mortality. Resistance in S. aureus to the main antibiotic used for treatment, methicillin, was first reported in the 1960s and, over the past decades, antibiotic resistant S. aureus, or MRSA, has become endemic in hospitals throughout the world.

To date, around eight promising candidate vaccines have failed in clinical trials, despite showing promise in pre-clinical models. Traditional approaches to vaccine development have thus failed to develop an effective weapon against MRSA.

We now know that cellular immunity (involving 'T-cells') is vitally important in protection against S. aureus infection, because individual T-cell subsets are very important for activating phagocytes - the immune cells that ingest and kill bacteria.

Dr McLoughlin and her colleagues found that 'T-helper type 1 cells' were elevated in patients following S. aureus infection. Their model vaccine, which jolted these cells into action, improved infection outcomes. The results therefore support the design of vaccines that specifically target these cells in humans.

Dr McLoughlin said: "This study demonstrates the importance of truly translational research. Using pre-clinical models we identified an immune mechanism important for protection against S. aureus infection, but it was via collaboration with clinicians at three Dublin teaching hospitals that we were able to translate these findings to show the same mechanism of immunity is relevant in human infection. Our findings will directly inform the design of next-gen anti S. aureus vaccines and could significantly increase our chances of realizing an effective vaccine to protect patients from MRSA."
-end-
The research was supported by funding from the Health Research Board (HRB) and the Wellcome Trust. The article will publish at http://dx.plos.org/10.1371/journal.ppat.1005226 after the embargo.

** Dr Rachel McLoughlin is available for interview **

Trinity College Dublin

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.