Nav: Home

The reasons for hemispheric dominance in the brain

November 05, 2018

The left and the right hemispheres specialise in different tasks. However, it has not yet been fully understood how one hemisphere assumes dominance over the other when it comes to controlling specific functions. Biopsychologists at Ruhr-Universität Bochum describe their latest findings in the journal Cell Reports, published online on 30 October 2018. Dr. Qian Xiao and Professor Onur Güntürkün have demonstrated in pigeons that the dominance is caused by slight differences in temporal activity patterns in both hemispheres.

Novel research approach

The two hemispheres are connected via thick nerve fibre bundles, so-called commissures. "In the past, it had been assumed that the dominant hemisphere transmits inhibitory signals to the other hemisphere via the commissures, thus suppressing specific functions in that region," explains Onur Güntürkün. However, the interactions that take place between the two hemispheres are excitatory, as well as inhibitory. "This is why it has remained a mystery where, exactly, functional brain asymmetries stem from," says Güntürkün.

In the biopsychology lab in Bochum, the researchers therefore approached this question using a new method. They had pigeons perform a colour differentiation test and extrapolated the activity of individual cells in the birds' visuomotoric forebrain. That brain region processes information provided by the visual sense and controls motor functions based on visual input. In birds, the left hemisphere is the dominant one for these tasks.

Communication blocked

In order to analyse the influence of inter-hemispheric interaction, Xiao and Güntürkün occasionally blocked the activity of the neurons that communicate with the other hemisphere. They monitored the reactions of those neurons that usually receive input from the other hemisphere. Thus, they were able to decode the influence of the interaction between the two hemispheres.

The result is: if both brain hemispheres compete for control, the left hemisphere is able to delay the activity of neurons in the right hemisphere. "The right hemisphere simply acts too late to control the response," describes Onur Güntürkün. The researchers demonstrated that the neurons in the left and the right hemispheres are also capable of synchronising their activity in principle.

A question of timing

"These results show that hemispheric dominance is based on a sophisticated mechanism," concludes Onur Güntürkün. "It does not hinge on one general inhibitory or excitatory influence; rather it is caused by minute temporal delays in the activity of nerve cells in the other hemisphere."
-end-


Ruhr-University Bochum

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.