Nav: Home

Inside job: A new technique to cool a fusion reactor

November 05, 2018

PORTLAND, Ore.-- Fusion offers the potential of near limitless energy by heating a gas trapped in a magnetic field to incredibly high temperatures where atoms are so energetic that they fuse together when they collide. But if that hot gas, called a plasma, breaks free from the magnetic field, it must be safely put back in place to avoid damaging the fusion device--this problem has been one of the great challenges of magnetically confined fusion.

During these so-called disruptions, the rapid release of the energy in the plasma can damage the fusion device: Intense heat can vaporize or melt the walls, large electrical currents can generate damaging forces, and high-energy "runaway" electron beams can cause intense localized damage.

Making disruptions less disruptive involves injecting material into the plasma that evenly radiates away the plasma energy. One challenge is that the material has difficulty reaching the middle of the plasma before a disruption occurs. Researchers hope that getting material into the middle can provide "inside-out" cooling of the plasma, preventing the disruption and the production of runaway electrons.

Researchers at the DIII-D National Fusion Facility have demonstrated a revolutionary new technique to achieve this "inside-out" cooling before a disruption occurs. A thin-walled diamond-shelled pellet carries a payload of boron dust deep into the plasma (Figure 1). The experiments show that shell pellets fired into the core at around 450 miles per hour can deposit boron dust deep in the plasma where it is most effective. The diamond shells gradually disintegrate in the plasma before releasing the dust near the center of the plasma.

The new approach transforms prospects for fusion energy by potentially solving three major problems--efficiently radiating away the plasma's heat, reducing forces by the plasma on the fusion device, and preventing the formation of energetic electron beams.

As DIII-D Science Director, Richard Buttery, comments, "Shell pellets offer the potential of dealing with all three facets of the challenge, eliminating risk of device harm."

Future work is aimed at creating more sophisticated shell designs that can carry larger payloads and penetrate reactor-class plasmas.

Another technique being explored at DIII-D is known as shattered pellet injection. In this approach, solid frozen pellets made of a heavy isotope of hydrogen and neon or argon are fired toward the plasma at high speed. They shatter into small fragments before hitting the edge of the plasma. Researchers performed experiments and extrapolated the results to the large fusion device, ITER, being developed in France. They believe this technique will be effective in ITER.

"The best way to reliably prevent disruptions remains an open question," said researcher Nick Eidietis, who works at the DIII-D fusion device in San Diego and will be presenting his research at the American Physical Society Division of Plasma Physics meeting in Portland, Oregon. "But we are making significant progress in developing the understanding and techniques necessary to achieve fusion power. If this new shell technique fulfills its initial promise, it will transform prospects for reliable fusion power plant operation."
-end-


American Physical Society

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.