Laser blasting antimatter into existence

November 05, 2018

PORTLAND, Ore.--Antimatter is an exotic material that vaporizes when it contacts regular matter. If you hit an antimatter baseball with a bat made of regular matter, it would explode in a burst of light. It is rare to find antimatter on Earth, but it is believed to exist in the furthest reaches of the universe. Amazingly, antimatter can be created out of thin air--scientists can create blasts of matter and antimatter simultaneously using light that is extremely energetic.

How do scientists make antimatter? When electrons, negatively charged subatomic particles, move back and forth they give off light. If they move very fast, they give off a lot of light. A great way to make them move back and forth is to blast them with powerful laser pulses. The electrons become almost as fast as light, and they generate beams of gamma-rays (Figure 1). Gamma-rays are like X-rays, such as those at doctor's offices or airport security lines, but are much smaller and have even more energy. The light beam is very sharp, about the thickness of a sewing needle even a few feet away from its source.

When gamma-rays made by electrons run into each other, they can create matter-antimatter pairs--an electron and a positron. Now, scientists have developed a new trick to create these matter-antimatter pairs even more efficiently.

"We developed an 'optical trap' which keeps the electrons from moving too far after they emit gamma-rays," said Marija Vranic from the University of Lisbon, who will be presenting her work at the American Physical Society Division of Plasma Physics meeting in Portland, Ore. "They get trapped where they can be hit again by the powerful laser pulses. This generates more gamma-rays, which creates even more pairs of particles."

This process repeats, and the number of pairs grows very fast in what is called a "cascade." The process continues until the particles that have been created are very dense (Figure 2).

Cascades are thought to occur naturally in faraway corners of the universe. For example, rapidly rotating neutron stars called pulsars have extremely strong magnetic fields, a trillion times stronger than the magnetic fields on Earth, that can produce cascades.

Studying cascades in the laboratory could shed light on mysteries related to astrophysical plasmas in extreme conditions. These beams can also have industrial and medical applications for non-invasive high-contrast imaging. Further research is necessary to make the sources cheaper and more efficient, so that they can become widely available.
-end-


American Physical Society

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.