Nav: Home

Laboratory experiments probe the formation of stars and planets

November 05, 2018

PORTLAND, Ore.--The cosmos is a void dotted with stars and an ever-increasing number of newly-observed planets beyond our solar system. Yet, how these stars and planets formed out of clouds of interstellar dust and gas remains mysterious.

The study of black holes provides clues that could help solve this mystery. Black holes are typically depicted as vacuum cleaners sucking up all the nearby matter and light. But in reality, clouds of dust and gas called accretion disks swirl around black holes, gradually moving closer and closer until they fall into the black holes.

Researchers at Princeton Plasma Physics Laboratory helped verify one of the proposed models for how this process works. Their work, supported by NASA, the National Science Foundation, the Department of Energy, the Simons Foundation, the Institute for Advance Study and the Kavli Institute for Theoretical Physics, will be presented at the American Physical Society Division of Plasma Physics meeting in Portland, Ore.

Typical objects orbiting a star, such as the planets going around our sun, continue orbiting for billions of years because their angular momentum remains unchanged, preventing them from falling inward. Such a system's angular momentum is a conserved quantity--it remains constant unless acted on by another force. If for some reason, the angular momentum of an orbiting object decreases, it can fall inward towards the star.

Unlike isolated planets, orbiting matter in a denser, more crowded accretion disk can experience forces, such as friction, that cause it to lose angular momentum. Such collisions, however, are not enough to explain how quickly matter must fall inward to form planets in a reasonable time. But the magnetorotational instability, in which magnetic forces take the place of collisions, can provide an explanation.

Researchers did an experiment simulating this process using a unique rotating water-filled device. Video is recorded of a water-filled red plastic ball as it moves away from the center of the device. A spring in the experiment connects the ball to a post to simulate magnetic forces. Position measurements of the ball indicate that the behavior of its angular momentum is consistent with what is expected of the magnetorotational instability.

Researchers are now conducting experiments using spinning liquid metals to study what happens in accretion disks with actual magnetic forces present. The experiments confirm how strongly the magnetic field affects the metal and pave the way toward a clear understanding of the role the fields play in accretion disks. The combined results mark a significant step toward a more complete explanation of the development of heavenly bodies.

American Physical Society

Related Black Holes Articles:

Supermassive black holes found in 2 tiny galaxies
U astronomers and colleagues have found two ultra-compact dwarf galaxies with supermassive black holes, the second and third such galaxies found to harbor the objects.
Stars born in winds from supermassive black holes
Observations using ESO's Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies.
Did LIGO detect black holes or gravastars?
After the first direct detection of gravitational waves that was announced last February by the LIGO Scientific Collaboration and made news all over the world, Luciano Rezzolla (Goethe University Frankfurt, Germany) and Cecilia Chirenti (Federal University of ABC in Santo André, Brazil) set out to test whether the observed signal could have been a gravastar or not.
New research reveals hundreds of undiscovered black holes
Computer simulations of a spherical collection of stars known as 'NGC 6101' reveal that it contains hundreds of black holes, until now thought impossible.
Chorus of black holes radiates X-rays
The NuSTAR mission is identifying which black holes erupt with the highest-energy X-rays.
Did the LIGO gravitational waves originate from primordial black holes?
Binary black holes recently discovered by the LIGO-Virgo collaboration could be primordial entities that formed just after the Big Bang, report Japanese astrophysicists.
A new look at the galaxy-shaping power of black holes
Data from a now-defunct satellite is providing new insights into the complex tug-of-war between galaxies, the hot plasma that surrounds them, and the giant black holes that lurk in their centers.
The energy spectrum of particles will help make out black holes
Scientists from MIPT, the Institute for Theoretical and Experimental Physics, and the National Research University Higher School of Economics have devised a method of distinguishing black holes from compact massive objects that are externally indistinguishable from one another.
Using gravitational waves to catch runaway black holes
Black holes are the most powerful gravitational force in the universe.
Black holes and measuring gravitational waves
The supermassive black holes found at the center of every galaxy, including our own Milky Way, may, on average, be smaller than we thought, according to work led by University of Southampton astronomer Dr.

Related Black Holes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".