Nav: Home

Laboratory experiments probe the formation of stars and planets

November 05, 2018

PORTLAND, Ore.--The cosmos is a void dotted with stars and an ever-increasing number of newly-observed planets beyond our solar system. Yet, how these stars and planets formed out of clouds of interstellar dust and gas remains mysterious.

The study of black holes provides clues that could help solve this mystery. Black holes are typically depicted as vacuum cleaners sucking up all the nearby matter and light. But in reality, clouds of dust and gas called accretion disks swirl around black holes, gradually moving closer and closer until they fall into the black holes.

Researchers at Princeton Plasma Physics Laboratory helped verify one of the proposed models for how this process works. Their work, supported by NASA, the National Science Foundation, the Department of Energy, the Simons Foundation, the Institute for Advance Study and the Kavli Institute for Theoretical Physics, will be presented at the American Physical Society Division of Plasma Physics meeting in Portland, Ore.

Typical objects orbiting a star, such as the planets going around our sun, continue orbiting for billions of years because their angular momentum remains unchanged, preventing them from falling inward. Such a system's angular momentum is a conserved quantity--it remains constant unless acted on by another force. If for some reason, the angular momentum of an orbiting object decreases, it can fall inward towards the star.

Unlike isolated planets, orbiting matter in a denser, more crowded accretion disk can experience forces, such as friction, that cause it to lose angular momentum. Such collisions, however, are not enough to explain how quickly matter must fall inward to form planets in a reasonable time. But the magnetorotational instability, in which magnetic forces take the place of collisions, can provide an explanation.

Researchers did an experiment simulating this process using a unique rotating water-filled device. Video is recorded of a water-filled red plastic ball as it moves away from the center of the device. A spring in the experiment connects the ball to a post to simulate magnetic forces. Position measurements of the ball indicate that the behavior of its angular momentum is consistent with what is expected of the magnetorotational instability.

Researchers are now conducting experiments using spinning liquid metals to study what happens in accretion disks with actual magnetic forces present. The experiments confirm how strongly the magnetic field affects the metal and pave the way toward a clear understanding of the role the fields play in accretion disks. The combined results mark a significant step toward a more complete explanation of the development of heavenly bodies.
-end-


American Physical Society

Related Black Holes Articles:

Growing old together: A sharper look at black holes and their host galaxies
The 'special relationship' between supermassive black holes (SMBHs) and their hosts -- something astronomers and physicists have observed for quite a while -- can now be understood as a bond that begins early in a galaxy's formation and has a say in how both the galaxy and the SMBH at its center grow over time, according to a new study from Yale University.
Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.
Pair of supermassive black holes discovered on a collision course
Astronomers have spotted a pair of supermassive black holes on a collision course in a galaxy 2.5 billion light-years away.
Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.
Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.
More Black Holes News and Black Holes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...