Nav: Home

Magnetic pumping pushes plasma particles to high energies

November 05, 2018

PORTLAND, Ore.--As you walk away from a campfire on a cool autumn night, you quickly feel colder. The same thing happens in outer space. As it spins, the sun continuously flings hot material into space, out to the furthest reaches of our solar system. This material, called the solar wind, is very hot close to the sun, and we expect it to cool quickly as it streams away. Satellite observations, however, show this is not the case--the solar wind cools as it streams out, but stays hotter than expected. There must be some additional way the solar wind heats up as it travels from the sun to Earth.

The solar wind is not like a calm summer breeze. Instead, it is a roiling, chaotic mess of turbulence and waves. There is a lot of energy stored in this turbulence, so scientists have long thought that it heats the solar wind. There is, however, a big issue--the heating expected from turbulence is not the heating observed.

Scientists at the University of Wisconsin - Madison have a new idea about what heats the solar wind, a theory called magnetic pumping. "If we imagine a toy boat on a lake, waves move the toy boat up and down. However, if a rubber duck comes by and hits the toy boat it can get out of sync with the waves. Instead of moving along with the waves the toy boat is pushed by the waves, making it move faster. Magnetic pumping works the same way--waves push the particles in the solar wind," said Emily Lichko, a graduate student who will be presenting her work at the American Physical Society's Division of Plasma Physics meeting in Portland, Ore.

A special feature of the idea is that all the particles in the solar wind should be affected by magnetic pumping, including the most energetic. Heating due to turbulence has an upper limit, but the new idea allows for heating of even extremely fast particles.

Where the solar wind hits Earth's magnetic field is a perfect place to look for magnetic pumping in nature. Satellites from NASA's Magnetospheric Multiscale (MMS) mission can measure the velocities of particles in incredible, unprecedented detail. The data shows evidence of magnetic pumping.

This research, funded by NASA, the National Science Foundation, and the Department of Defense, is important because if energetic particles reach the space near Earth, they can damage satellites, harm astronauts, and even interrupt military communication. Understanding how these particles are energized, and what happens to them as they travel from the sun to Earth, will someday help scientists develop methods to better protect us from the effects of these particles. Additionally, it is possible that magnetic pumping could also be happening beyond the solar wind in places like the sun's atmosphere, the interstellar medium, or supernova explosions. This research has the potential to shed light not just on the solar wind, but on how particles throughout the universe are heated.
-end-


American Physical Society

Related Solar Wind Articles:

Researchers recreate the sun's solar wind and plasma 'burps' on Earth
A new study by University of Wisconsin-Madison physicists mimicked solar winds in the lab, confirming how they develop and providing an Earth-bound model for the future study of solar physics.
Spacecraft measurements reveal mechanism of solar wind heating
Queen Mary University of London has led a study which describes the first direct measurement of how energy is transferred from the chaotic electromagnetic fields in space to the particles that make up the solar wind, leading to the heating of interplanetary space.
New insights on comet tails are blowing in the solar wind
Combined observations of Comet McNaught -- one of the brightest comets visible from Earth in the past 50 years -- have revealed new insights on the nature of comets and their relationship with the Sun.
Wind and solar farms offer an unexpected benefit to the Sahara Desert: More water
Wind and solar farms appear to enhance local rainfall and also vegetation cover in the Sahara Desert, a new study reveals.
Large wind and solar farms in the Sahara would increase heat, rain, vegetation
Wind and solar farms are known to have local effects on heat, humidity and other factors that may be beneficial -- or detrimental -- to the regions in which they are situated.
Satellites more at risk from fast solar wind than a major space storm
Satellites are more likely to be at risk from high-speed solar wind than a major geomagnetic storm according to a new UK-US study published this week in the journal Space Weather.
Report confirms wind technology advancements continue to drive down wind energy prices
Wind energy pricing remains attractive, according to an annual report released by the U.S.
Parker Solar Probe and the birth of the solar wind
This summer, humanity embarks on its first mission to touch the Sun: A spacecraft will be launched into the Sun's outer atmosphere.
New battery could store wind and solar electricity affordably and at room temperature
A new type of flow battery that involves a liquid metal more than doubled the maximum voltage of conventional flow batteries and could lead to affordable storage of renewable power.
The true power of the solar wind
The planets and moons of our solar system are continuously being bombarded by particles from the sun.
More Solar Wind News and Solar Wind Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.