Nav: Home

Could rising CO2 trigger return of eradicated mosquito-related disease?

November 05, 2018

Research mapping the evolution of mosquitos against rising CO2 levels over millions of years, has suggested that more mosquito-related diseases could have consequences for future human health as the climate continues to change.

The research showed that whilst there is a link between rising CO2 levels and mosquito evolution, it is less directly linked than previously thought, with other factors, such as the diversity of mammal hosts, contributing to an increase in the species richness of mosquitos.

Many mosquito-borne diseases have been eradicated in areas of Europe, whilst many parts of Asia and Africa still harbour diseases such as malaria, Yellow fever, Zika virus, and Dengue fever.

Female mosquitos can identify sources of blood-meal from the CO2 levels that mammals release from their bodies. There is now concern that as CO2 levels rise as a result of human activity, so too will the diversity of disease-carrying mosquitos.

There is limited research, however, on how the mosquito is evolving in a changing climate and how and why the species is diversifying.

The new study, from researchers at the University of York, the University of Bath, and China Agricultural University, shows for the first time the impact that climate change is having on the rate in which mosquitos diversify, and what this might mean for human health in the future.

Dr Katie Davis, from the University of York's Department of Biology, said: "We constructed an evolutionary tree of mosquito species, and then mapped it against past climate change. We then used a mathematical model to look at direct cause and effect, which revealed that rising CO2 levels overtime has increased species of mosquito, but less directly than we previously thought.

"We found that the increase in the diversity of mammals led directly to a rise in the number of mosquito species, and also that there is a relationship between CO2 levels and the number of mammal species, but there are missing pieces of this puzzle, so we can still only speculate at this stage."

More research is needed to understand what climate change means for the future of the mosquito and the work will contribute to further discussions about the value of the mosquito to the ecosystem and how to manage the diseases they carry.

Professor Matthew Wills, from the University of Bath, said: "It's only the female mosquitos that take a blood meal, and they use the CO2 that mammals and other vertebrates exhale as a very general cue to locate their hosts. One line of thinking is that as ambient levels of atmospheric CO2 rose, mosquitos may have found it increasingly difficult to distinguish between the CO2 from their hosts and those background levels.

"Vision, body heat and other smells might then have become more important in locating their blood meals, but many of these cues tend to be more specific to particular hosts. As a general rule, we know that a strong host specificity can be an important driver of speciation in parasites, and the same may be true in mosquitos."

Chufei Tang, from China Agricultural University, said: "The rising atmospheric CO2 has been proven to influence various kinds of organisms, but this is the first time such impact has been found on insects. This research provides yet another reason for people to participate in low-carbon lifestyles."

Dr Davis added: "Despite some uncertainties we can now show that mosquito species are able to evolve and adapt to climate change in high numbers. With increased speciation, however, comes the added risk of disease increase and the return of certain diseases in countries that had eradicated them or never experienced them before."
-end-


University of York

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.