Nav: Home

Study shows movement, evolutionary history of TB in China

November 05, 2018

MADISON - A genetic scan of a massive number of samples taken from tuberculosis patients across China has shown a surprising genetic uniformity: just two "strains" of the tuberculosis bacterium account for 99.4 percent of all cases.

Globally, TB is caused by seven major strains.

"Yes, I was surprised at the lack of diversity in the bacterium," said Caitlin Pepperell, an associate professor of medical microbiology at University of Wisconsin-Madison. Pepperell is a corresponding author in a paper published online today (Nov. 5) in Nature Ecology and Evolution that looked at 4,578 samples from patients in China.

Pepperell's co-authors included Qian Gao and Qingyun Liu, both at the Shanghai Public Health Clinical Center and Fudan University in Shanghai.

China has about one million new cases of TB annually, a number that is slowly falling. Each year, 10 million cases of TB account for an estimated 1.7 million deaths globally, making it the most deadly infectious disease. The pandemic is particularly acute in developing countries in Asia and sub-Saharan Africa.

The most likely explanation for the uniformity of TB strains in China is political. Movement into the old empire was limited by dynastic policies of seclusion, Pepperell says. "The hypothesis my colleagues and I use to explain the surprising lack of diversity is that at the time when the current TB epidemic was taking hold in China, there was less contact with other regions compared to contemporaneous societies elsewhere, but there was a lot of movement within China."

That internal movement allowed the strain Lineage 2 or L2 to spread widely in China, where it now accounts for 80 percent of current cases. L2 is estimated to have arisen in Southeast Asia, with subsequent evolution of important daughter strains within China.

The introduction of strain Lineage 4, which now causes 17 percent of cases in China, was likely from ships engaged in the silk trade between 1084 and 1336 A.D.

And because apparently few other strains were introduced into China, the result is a picture not seen elsewhere - of two dominant strains in a pandemic that has persisted for a thousand years or more.

Several features distinguish TB from other pathogens and make its evolution dependent on human behavior. Mycobacterium tuberculosis does not share DNA with other species of bacteria. This dangerous phenomenon, called "horizontal gene transfer," allows rapid movement of traits like antibiotic resistance among bacteria.

And because TB has no non-human hosts, it infects only through human-to-human contact, producing a slower advance compared to many other epidemics.

Although these factors could help explain why a political decision to isolate China allowed two strains to move through the country largely unchanged, the study was not designed to prove causation.

The new study adds to an emerging picture of the movement of the dangerous and persistent TB epidemic across the globe. In a recent report in Science Advances, Pepperell and colleagues studied Lineage 4, the predominant international strain, and concluded that "repeated sourcing from Europe has been the main driving force for the global expansion of L4, with intense dispersal to Africa and the Americas concomitant with European colonizing efforts" between the years 1600 and 1900.

That study also found that strains of TB resistant to multiple drugs in recent decades have "overwhelmingly" remained local. That encouraging finding raises the possibility of limiting the spread of these particularly dangerous pathogens.

After decades of little progress in drug treatment for TB, new drugs are already in use or in the pipeline, Pepperell adds. However, because many people stop taking the pills before the bacterium is fully vanquished, standard practice calls for practitioners to watch that doses are actually taken for at least the six months needed to clear the infection.

Pepperell, who practices infectious disease medicine in addition to her research, says a main goal of the genetic studies is to gain an evolutionary understanding of why TB is so difficult to treat and eradicate. "We talk about robustness and adaptability," she says. "A robust organism is strong in the face of perturbations. Adaptability is the ability to change in response to a change in environmental conditions."

Clearly, the Lineage 2 strain that dominates in China is robust. It is also a major cause of drug resistant TB, demonstrating its adaptability as well.

The current study alone, she adds, "will not tell us why treatment and eradication of TB is so difficult, and it will not change treatment, directly. The overarching contribution of this kind of study is to understand what forces shaped these bacteria. That is obviously relevant to treatment, and to drug resistance, but you can't draw a direct line from what we have found so far, saying, 'These will be the effects.'"
-- David Tenenbaum, 608-265-8549,

This work was supported by the National Institutes of Health (grant 1R01AI113287-01A1); the Natural Science Foundation of China and other sources.

University of Wisconsin-Madison

Related Evolution Articles:

An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Pain free, thanks to evolution
African mole-rats are insensitive to many different kinds of pain.
Evolution in the gut
Evolution and dietary habits interact and determine the composition of bacteria in the digestive tract.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.