Nav: Home

Researchers solve mystery surrounding a form of Batten disease

November 05, 2018

A team led by researchers at Baylor College of Medicine has uncovered an unexpected mechanism that can explain a form of Batten disease called neuronal ceroid lipofuscinosis 8. The findings published in the journal Nature Cell Biology provide potential new targets for future therapeutic interventions for this rare and incurable disease.

"Batten disease refers to a group of diseases that are part of the lysosomal storage disorders. At the core of these conditions are problems with the cell's ability to clear the waste produced by its regular functions, which leads to the accumulation of cellular waste to toxic levels," said first author Dr. Alberto di Ronza, who was a postdoctoral researchers in the Sardiello lab while he was working on this project.

The lysosomes are the structures in charge of clearing the waste. Lysosomes are sacs containing enzymes, a type of proteins that break down cellular waste into its constituent components, which the cell can recycle or discard. When lysosomes fail and cellular waste accumulates, disease follows.

"When we started this project, we knew that neuronal ceroid lipofuscinosis 8 was associated with defects in the CLN8 protein, but we didn't know how the defects led to the disease," said corresponding author Dr. Marco Sardiello, assistant professor of molecular and human genetics at Baylor.

It was a mystery because CLN8 is not located in the lysosome. It works in a completely different part of the cell, called the endoplasmic reticulum, which is where many molecules, including lysosomal enzymes, are synthesized in the cell. The mystery was how mutations in a protein that is not in the lysosome would result in a lysosomal storage disorder.

Discovering a new fundamental mechanism

To solve the mystery, the researchers first looked for proteins that would assist on the exit of lysosomal enzymes from the endoplasmic reticulum en route to the lysosomes.

"We narrowed it down to four candidates and CLN8 was one of them. It was the only one that interacted with two-thirds of the lysosomal enzymes we tested," di Ronza said.

Then, the researchers worked with mice carrying defective CLN8 molecules, a mouse model that recapitulates many of the characteristics of the disease observed in humans. They determined that in these mice the lysosomes have fewer lysosomal enzymes.

"Things started to click," Sardiello said. "If CLN8 in the endoplasmic reticulum mediated transfer of lysosomal enzymes, then having defective CLN8 proteins could explain why fewer enzymes make it to the lysosome."

In addition, the researchers discovered that a specific piece of CLN8 acts like a hook, 'catching' lysosomal enzymes to facilitate their exit from the endoplasmic reticulum. They also identified the molecular signals that help CLN8 move from the endoplasmic reticulum to its destination and back. These discoveries open potential new therapeutic interventions.

"I started this research because I wanted to contribute to improve patients' lives," di Ronza said. "Patients with CLN8 defects have limited options, but I hope that this work will provide opportunities to explore potential new therapies for these patients."

"Co-author Lauren Popp and I were very excited to contribute to this study that elucidated a novel mechanism of lysosomal formation," said co-author Dr. Laura Segatori, associate professor of chemical and biomolecular engineering at Rice University. "Our group has focused on understanding and manipulating the mechanisms controlling processing of lysosomal proteins. I am excited that this study provides novel findings that are likely to change the way we approach the study and treatment of lysosomal storage disorders."

"The solution to this mystery was completely unexpected," Sardiello said. "We identified a new fundamental biological process that, when is disturbed, leads to this form of lysosome storage disease. This discovery is relevant not only to the Batten disease community, but also to other scientific communities studying basic mechanisms of the cell."
Other contributors to this work include Lakshya Bajaj, Jaiprakash Sharma, Deepthi Sanagasetti, Parisa Lotfi, Carolyn Joy Adamski, John Collette, Michela Palmieri, Abdallah Amawi, Kevin Tommy Chang, María Chiara Meschini, Hon-Chiu Eastwood Leung, Alessandro Simonati, Richard Norman Sifers and Filippo Maria Santorelli. The authors are affiliated with one of the following institutions: Baylor College of Medicine, Texas Children's Hospital, Rice University, University of Verona, Italy and IRCCS Stella Maris, Italy.

This work was supported by the National Institutes of Health grant NS079618 and grants from the Beyond Batten Disease Foundation and the NCL-Stiftung Foundation. This project was supported in part by the Hamill Foundation and by the Intellectual and Developmental Disabilities Research Center grant number 1U54 HD083092 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Baylor College of Medicine

Related Proteins Articles:

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.