Nav: Home

'Master key' gene has links to both ASD and schizophrenia

November 05, 2018

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have now created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD.

The results are scheduled for publication in Nature Neuroscience.

Mice partially lacking MIR-137 display learning and memory deficits, repetitive behaviors and impaired sociability. MIR-137 encodes a microRNA, which regulates hundreds of other genes, many of which are also connected to schizophrenia and autism spectrum disorder.

By treating mutant mice with papaverine, a vasodilator discovered in the 19th century, scientists could improve the performance of the mice on maze navigation and social behavior tests. Papaverine is an inhibitor of the enzyme Pde10a (phosphodiesterase 10a), which is elevated in mutant mice.

Other Pde10a inhibitors have been tested in schizophrenia clinical trials, but the new results suggest this group of compounds could have potential for some individuals with ASD, says senior author Peng Jin, PhD, professor of human genetics at Emory University School of Medicine.

Having just the right level of MIR-137 function is important. Previous studies of people with genetic deletions show that a loss of MIR-137 is connected with intellectual disability and autism spectrum disorder. The reverse situation, in which a genetic variation increases MIR-137 levels, appears to contribute to schizophrenia.

"It's interesting to think about in the context of precision medicine," Jin says. "Individuals with a partial loss of MIR137 - either genomic deletions or reduced expression -- could potentially be candidates for treatment with Pde10a inhibitors."

To create the mutant mice, Jin's lab teamed up with Dahua Chen, PhD and Zhao-Qian Teng, PhD scientists at the State Key Laboratories of Stem Cell and Reproductive Biology and Membrane Biology, part of the Institute of Zoology, Chinese Academy of Sciences in Beijing. Jin says that generating mice with a heritable disruption of MIR-137 was technically challenging, taking several years.

Mice completely lacking MIR-137 have problems with development and die soon after birth. The effect is similar if the deletion is restricted to the nervous system. Other "knockouts" of microRNA genes have not displayed such distinct post-natal effects, Jin notes. However, the scientists wanted to study animals that had one copy intact - a situation analogous to the humans with ASD.

"Several studies had shown an association between MIR-137 and both ASD and schizophrenia, but it was very important to show that causal relationship," Jin says.

Mice with one copy of MIR-137 disrupted in the brain learn to navigate mazes with more difficulty than controls. They also display increased repetitive behaviors (self-grooming and marble-burying) and show a limited preference to socialize with another mouse rather than an object, and do not discriminate familiar mice from strangers.

The brains of mutant mice have a higher density of dendritic spines, indicating that they have impaired synaptic pruning, a process other researchers have observed is altered in schizophrenia and autism.

Analyzing the genes in brain cells whose activities were most altered by MIR-137 loss allowed the researchers to pinpoint Pde10a. Treating mutant mice with papaverine improved their ability to learn mazes, although it did not restore their performance to that of control mice. In addition, papaverine treatment significantly increased the amounts of time mutant mice interacted with other mice.
-end-
Co-first authors of the Nature Neuroscience paper are Emory postdoctoral fellow Ying Cheng, PhD, along with Beijing scientists Zhi-Meng Wang, Weiqi Tan and Xiaona Wang.

Research at Emory was supported by the National Institute of Neurological Disorders and Stroke (NS051630 and NS079625), the National Institute of Mental Health (MH102690), the Simons Foundation Autism Research Initiative and the Brain & Behavior Research Foundation.

Emory Health Sciences

Related Autism Articles:

Adulthood with autism
The independence that comes with growing up can be scary for any teenager, but for young adults with autism spectrum disorder and their caregivers, the transition from adolescence to adulthood can seem particularly daunting.
Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.
Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.
Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.
Autism and the smell of fear
Autism typically involves the inability to read social cues. We most often associate this with visual difficulty in interpreting facial expression, but new research at the Weizmann Institute of Science suggests that the sense of smell may also play a central role in autism.
Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.
State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.
Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.
Pinpointing the origins of autism
The origins of autism remain mysterious. What areas of the brain are involved, and when do the first signs appear?
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
More Autism News and Autism Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.