Nav: Home

Caterpillar, fungus in cahoots to threaten fruit, nut crops, study finds

November 05, 2018

CHAMPAIGN, Ill. -- New research reveals that Aspergillus flavus, a fungus that produces carcinogenic aflatoxins that can contaminate seeds and nuts, has a multilegged partner in crime: the navel orangeworm caterpillar, which targets some of the same nut and fruit orchards afflicted by the fungus. Scientists report in the Journal of Chemical Ecology that the two pests work in concert to overcome plant defenses and resist pesticides.

"It turns out that the caterpillar grows better with the fungus; the fungus grows better with the caterpillar," said University of Illinois entomology professor and department head May Berenbaum, who conducted the study with entomology graduate student Daniel S. Bush and U.S. Department of Agriculture research entomologist Joel P. Siegel.

"The fungus is an incredibly opportunistic pathogen. It infects all kind of plants. It also infects animals on occasion, including humans," Berenbaum said. "And it's very, very good at breaking down toxins."

The caterpillar, Amyelois transitella, also is an opportunistic feeder. Unlike most insect larvae, it somehow overcomes the defenses of a variety of host plants, including almonds, pistachios and figs. The caterpillar chews its way in and contaminates the fruits and nuts with its excrement and webbing. It also opens the door to A. flavus infection. Unlike many other insects, the navel orangeworm caterpillar can metabolize aflatoxin, making it immune to this toxic fungal byproduct, Berenbaum said.

Prior to the new study, researchers and growers had observed coinfection with the fungus and the caterpillar, but did not know whether the two simply tolerated one another or worked together in a mutualistic partnership.

To find out, the team ran experiments to see how laboratory-reared navel orangeworm caterpillars responded to specific plant defensive compounds and pesticides in the presence or absence of the fungus. They measured caterpillar mortality and time to pupation in a variety of conditions. The tests included a caterpillar strain that was susceptible to pyrethroid pesticides and another that was resistant.

The tests revealed that the caterpillars developed much more rapidly in the presence of the fungus, regardless of the natural or man-made toxins that were also present. Larvae exposed to the plant defensive compound xanthotoxin developed nearly twice as fast when the fungus was also present. Larvae fed a diet containing xanthotoxin or bergapten - another phytochemical in the same class as xanthotoxin - also lived much longer in the presence of the fungus than when exposed to the chemicals alone.

The caterpillars differed in their response to pesticides - with and without their fungal partner. The pesticide-susceptible caterpillars had higher mortality in the presence of the pesticide and fungus than when exposed to the pesticide alone. Pesticide-resistant caterpillars were unaffected by the pesticide, whether or not the fungus was present.

When the researchers incubated the fungus with the pesticide bifenthrin before the caterpillars came on the scene, however, caterpillar mortality went down. This suggests A. flavus detoxifies bifenthrin, which helps the caterpillar, the researchers wrote.

"It's very likely that this caterpillar has managed to colonize so many new crops because its partner fungus can break down the chemical defenses of the tree crops that it encounters," Berenbaum said. "It's also giving this caterpillar an extra edge because the fungus is breaking down some of the pesticides that growers are using to combat the caterpillar."
-end-
The California Pistachio Research Board and the Almond Board of California funded this research.

Editor's notes:

To reach May Berenbaum, call 217-333-7784; email maybe@illinois.edu.

To reach Daniel Bush, call 618-917-2982; email dsbush2@illinois.edu.

The paper "Accelerated development and toxin tolerance of the navel orangeworm Amyelois transitella (Lepidoptera: Pyralidae) in the presence of Aspergillus flavus" is available online and from the diya@illinois.eduU. of I. News Bureau.

DOI: 10.1007/s10886-018-1027-0

University of Illinois at Urbana-Champaign

Related Pesticides Articles:

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.
Wasps' gut microbes help them -- and their offspring -- survive pesticides
Exposure to the widely used pesticide atrazine leads to heritable changes in the gut microbiome of wasps, finds a study publishing Feb.
A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.
SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Hypertension found in children exposed to flower pesticides
Researchers at University of California San Diego School of Medicine found higher blood pressure and pesticide exposures in children associated with a heightened pesticide spraying period around the Mother's Day flower harvest.
Banned pesticides in Europe's rivers
Tests of Europe's rivers and canals have revealed more than 100 pesticides -- including 24 that are not licensed for use in the EU.
The persistence of pesticides threatens European soils
A study developed by researchers from the Diverfarming project finds pesticide residues in the soils of eleven European countries in six different cropping systems
Honeybees at risk from Zika pesticides
Up to 13 percent of US beekeepers are in danger of losing their colonies due to pesticides sprayed to contain the Zika virus, new research suggests.
Alternatives to pesticides -- Researchers suggest popular weeds
Research proves that extracts from S. nigrum and D. stramonium, globally existing weed species, may help to protect crop systems against agricultural pests.
More Pesticides News and Pesticides Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.