Nav: Home

New gene therapy reprograms brain glial cells into neurons

November 05, 2018

A new gene therapy can turn certain brain glial cells into functioning neurons, which in turn could help repair the brain after a stroke or during neurological disorders like Alzheimer's or Parkinson's diseases.

In a series of studies in animals, a team of Penn State researchers led by Dr. Gong Chen developed a new gene therapy to reprogram glial cells -- which surround each neuron and can be activated when neurons die -- and turn them into healthy, functioning neuron cells.

Chen --professor and Verne M. Willaman Chair in Life Sciences, who presented the findings Nov. 4 at the annual meeting of the Society for Neuroscience in San Diego -- said that while more research is needed, he hopes the innovative technology may eventually be able to help patients with brain injury and degenerative neurological disorders.

"There is a huge unmet medical need to treat severe neurological disorders such as stroke, Alzheimer's disease and Parkinson's disease, among others," Chen said. "Neuronal loss is the common cause of these functional deficits in the brain and spinal cord. Therefore, simply targeting cell signaling pathways affected by these neurodegenerative disorders without regenerating new neurons will not be most effective to restore the lost brain functions."

In addition to neurons, the human brain is also composed of glial cells, which surround each neuron and help support healthy brain function. Chen said each of these glial cells contains neural genes that are silenced, or switched off, during early brain development.

By creating a new in vivo cell conversion technology, Chen said he and his team were able to inject a neural transcription factor called NeuroD1-- a protein that activates neuronal genes and silences glial genes -- within injured parts of the brain to infect glial cells. The NeuroD1 then binds with the glial cell's DNA and activates the neuron genes, turning the glial cell into a functioning neuron.

"This is an economic way of internal neuroregeneration without the need to transplant external cells," Chen said. "Because glial cells are abundant throughout human brains, every patient is equipped with such potential for internal neuroregeneration that has not been fully realized yet."

Chen said that in their animal studies, they were able to not only regenerate neurons with the new technique, but also restore motor and cognitive functions, as well.

"Current treatments for stroke patients, for example, have to be administered within hours, because the medication is trying to protect the neurons before they are injured and die," Chen said. "Our new technique is different in that it actually regenerates neurons after they've already died, and can be used days, weeks, or months after injury."

While the technology has only been tested in animals, Chen said he and the other researchers are hoping to eventually test the technology in a human clinical trial.

When a patient experiences an injury like a stroke, or develops a neurological disorder like Alzheimer's, neurons in parts of the brain die, creating a decline in brain function. Chen said that because adults do not have the ability to regenerate neurons on their own, developing a treatment to help patients make new neurons would benefit a large number of patients experiencing neurological disorders that are currently incurable.

In addition to developing the gene therapy, Chen and his team are also working on a drug therapy that converts human glial cells into neurons. The researchers have had success with the drug therapy in vitro in cell cultures, and Chen said they hope to move to animal studies in vivo and eventually to help human patients.
-end-
This work was supported by the National Institutes of Health, Alzheimer's Association and the Charles H. Skip Smith Endowment Fund.

Chen's team members on this presentation include Ziyuan Guo, Zheng Wu, Yue Wang, Jiuchao Yin, Lei Zhang, Yuchen Chen, all from Penn State; and Longjiao Ge, from the Chinese Academy of Sciences.

Penn State

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.