Physicists create new, simpler-than-ever quantum 'hard drive for light'

November 05, 2018

Physicists at the University of Alberta in Canada have developed a new way to build quantum memories, a method for storing delicate quantum information encoded into pulses of light.

"We've developed a new way to store pulses of light--down to the single-photon level--in clouds of ultracold rubidium atoms, and to later retrieve them, on-demand, by shining a 'control' pulse of light," said Lindsay LeBlanc, assistant professor of physics and Canada Research Chair in Ultracold Gases for Quantum Simulation. LeBlanc conducted this research with postdoctoral fellow Erhan Saglamyurek.

Quantum memories are an important component of quantum networks, serving much the same role as hard drives in today's computers. And the interest in storing quantum data efficiently and effectively is only growing, with practical applications including a quantum fibre-optic internet and other methods of secure communication.

"This experiment involved taking short pulses of light, in which we could encode quantum information, storing the light in the atoms, and then retrieving the original pulse that carries the same information," explained Saglamyurek.

The novel method developed by LeBlanc and Saglamyurek, which is best-suited for key applications requiring high-speed operation, also has considerably fewer technical requirements than required in common quantum storage techniques. "The amount of power needed, for example, is significantly lower than current options, and these reduced requirements make it easier to implement in other labs," added Saglamyurek. This discovery will allow for the crucial scaling up of quantum technologies, which has proven the biggest challenge to date in the emerging field.
The research team also included two graduate students working in LeBlanc's lab, Taras Hrushevskyi and Anindya Rastogi, and Khabat Heshami from the National Research Council in Ottawa. The paper, "Coherent storage and manipulation of broadband photons via dynamically controlled Autler-Townes splitting," was published in Nature Photonics (doi: 10.1038/s41566-018-0279-0).

University of Alberta

Related Atoms Articles from Brightsurf:

How to gently caress atoms
It is extremely difficult to study oxygen molecules on the metal oxide surface without altering them.

'Hot and messy' entanglement of 15 trillion atoms
In a study published in Nature Communications, ICFO, HDU and UPV researchers report the production of a giant entangled state that may help medical researchers detect extremely faint magnetic signals from the brain.

Exciting apparatus helps atoms see the light
Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers.

Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.

Grabbing atoms
In a first for quantum physics, University of Otago researchers have 'held' individual atoms in place and observed previously unseen complex atomic interactions.

Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.

2D materials: arrangement of atoms measured in silicene
Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties.

Atoms don't like jumping rope
Nanooptical traps are a promising building block for quantum technologies.

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.

Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.

Read More: Atoms News and Atoms Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to