Nav: Home

Growing magnetic fields in deep space: Just wiggle the plasma

November 05, 2018

Contrary to what many people believe, outer space is not empty. In addition to an electrically charged soup of ions and electrons known as plasma, space is permeated by magnetic fields with a wide range of strengths. Astrophysicists have long wondered how those fields are produced, sustained, and magnified. Now, scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have shown that plasma turbulence might be responsible, providing a possible answer to what has been called one of the most important unsolved problems in plasma astrophysics.

The researchers used powerful computers at the Princeton Institute for Computational Science and Engineering (PICSciE) and the National Energy Research Scientific Computing Center (NERSC) at the DOE's Lawrence Berkeley National Laboratory to simulate how the turbulence could intensify magnetic fields through what is known as the dynamo effect, in which the magnetic fields become stronger as the magnetic field lines twist and turn. "This work constitutes an important step toward answering for the first time the question of whether turbulence can amplify magnetic fields to dynamical strengths in a hot, dilute plasma, such as that residing within clusters of galaxies," said Matthew Kunz, an astrophysics professor at Princeton University and an author of the paper, which was published in The Astrophysical Journal Letters.

Past research has focused on dynamos as they might occur in so-called collisional plasmas, in which particles collectively behave as a fluid. But intergalactic plasmas are collisionless, so past experiments are not necessarily relevant. This new research is meant to address that gap. "We wanted to see how the dynamo would behave in the collisionless regime," said Denis St-Onge, graduate student in the Princeton Program in Plasma Physics at PPPL and lead author of the paper.

St-Onge and Kunz focused on the ways in which the velocities and magnetic fields of individual particles within collisionless plasma are directly linked. This linkage -- if one quantity increases or decreases, the other must, too -- would seem to rule out the existence of a dynamo. "If this were the whole story, it would be disastrous for the dynamo," said St-Onge. "To match what we observe in space, the dynamo would have to increase the strength of the seed magnetic field by at least a factor of one trillion, but the energy of the particles would also have to increase, and there's just not enough available energy in the dynamo for that to happen."

To produce the strength of magnetic fields observed in space, the tie that binds particle energy to magnetism must be severed. This is just what St-Onge and Kunz observed in the computer simulations: that types of plasma turbulence known as mirror and firehose instabilities caused the plasma particles to scatter, and scattering broke the link between particle energy and magnetism and allowed the amplitudes of the magnetic fields to grow closer to what is observed in nature.

Future research, St-Onge notes, will focus on why this turbulent scattering occurs. "In addition, we would like to investigate the specifics of particle scattering," St-Onge said. "How exactly do the instabilities cause the particles to scatter, how often does the scattering occur, and can the scattering lead to sudden, dramatic growth of a magnetic field? The last idea is a notion proposed by PPPL Director Steven Cowley years ago. We would like to investigate whether this is true."
This research was supported by the DOE Office of Science. NERSC is a DOE Office of Science user facility.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles:

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at