Nav: Home

HKU astronomy research team unveils one origin of globular clusters around giant galaxies

November 05, 2019

A study led by Dr Jeremy Lim and his Research Assistant, Miss Emily Wong, at the Department of Physics of The University of Hong Kong (HKU), utilizing data from the Hubble Space Telescope, has provided surprising answers to the origin of some globular clusters around giant galaxies at the centers of galaxy clusters. Conducted in collaboration with Professor Thomas Broadhurst at the Ikerbasque in Spain and a Visiting Research Professor at the HKU Department of Physics, Dr Youichi Ohyama at the Academia Sinica Institute of Astronomy & Astrophysics in Taiwan, and Dr Elinor Medizinski at Princeton University in the USA, their work is reported in the journal paper "Sustained Formation of Progenitor Globular Clusters in a Giant Elliptical Galaxy" published recently on the Nature Astronomy website.

Globular clusters are the oldest visible objects in the Universe - each contains hundreds of thousands to occasionally over ten million stars all born at essentially the same time, and densely packed into a spherical volume with diameter over a thousand times smaller than the diameter of our Galaxy. Globular clusters are thought to have formed soon after the Universe began nearly 13.8 billion years ago, at the same time as, or perhaps even before, the first galaxies formed. They have since remained largely unchanged, apart from the ageing and death of their constituent stars. As ancient, pristine witnesses to the formation of galaxies, globular clusters might provide vital clues to how infant galaxies form and then grow over time - if only we knew how globular clusters themselves form and accumulate around galaxies. Our Galaxy is surrounded by about 150 such globular clusters, some of which are visible to the naked eye from a sufficiently dark site. Bigger galaxies are surrounded by even more globular clusters. The largest numbers of globular clusters, over ten to twenty thousand, are found around giant galaxies at the centers of galaxy clusters. Galaxy clusters contain hundreds to thousands of galaxies bound together by gravity, and are infused by hot gas (up to ten times hotter than the center of the Sun) that far outweighs all the stars in the galaxies comprising the galaxy cluster combined.

They research team led by Dr Lim discovered that globular clusters around the giant galaxy at the center of the Perseus galaxy cluster are not all ancient objects: rather, a few thousand have formed over at least the past 1 billion years, and perhaps many more over the course of cosmic history. As shown in the accompanying picture, the younger globular clusters are closely associated with, and were therefore born in, a complex filamentary network of cool gas that extends to the outer reaches of the giant galaxy. This cool gas is thought to have precipitated from the hot gas that infuses the entire Perseus galaxy cluster; the density of the hot gas and hence the rate at which this gas cools rises rapidly towards the center of the galaxy cluster. After they form, the infant globular clusters are no longer bound to the network of cool gas and rain inwards onto the giant galaxy, like raindrops condensing and falling from clouds. By contrast, as shown also in the accompanying picture, the older globular clusters are distributed at random around the giant galaxy, owing to random scatterings off each other during their orbits around the giant galaxy.

This remarkable discovery explains a number of puzzling aspects about globular clusters around giant galaxies. First is their sheer numbers: evidently, some fraction of globular clusters around giant galaxies formed over cosmic history from the gas that infuses galaxy clusters. Second is the especially broad range of colors exhibited by globular clusters around giant galaxies: the colors of globular clusters change progressively from blue to red as they age (because more massive and bluer stars die first, leaving less massive and redder stars), and hence their broad range of ages results in a broad range of colors.

The globular clusters that formed from the network of cool gas at the center of the Perseus galaxy cluster span a broad range of masses, but with a diminishing number at higher masses. Their number dependence with mass follows the same trend as the truly ancient globular clusters, as well as less massive star clusters in our Galaxy and other spiral galaxies - thus affirming a common formation mechanism for star clusters over all mass scales (from those weighing just over ten Suns to those weighing about ten million Suns) irrespective of the environment in which they formed, whether it be from gas compressed in the spiral arms of galaxies or dense gas at the centers of galaxy clusters; or in ways yet to be discovered as is the case for truly ancient globular clusters.

The sustained formation of globular clusters at the centers of galaxy clusters helps explain another puzzling aspect of giant galaxies - their enormous sizes, up to ten times or more that of our Galaxy. Whereas the more massive globular clusters will long endure, the less massive globular clusters are expected to be ripped apart as they orbit the galaxy: their constituent stars, spread throughout the giant galaxy at the center of the galaxy cluster, contribute to the growth in size of these galaxies over time.
-end-
The paper:

'Sustained Formation of Progenitor Globular Clusters in a Giant Elliptical Galaxy' by Jeremy Lim, Emily Wong, Youichi Ohyama, Tom Broadhurst & Elinor Medezinski in Nature Astronomy.

Link of journal paper: http://www.nature.com/articles/s41550-019-0909-6

The University of Hong Kong

Related Hubble Space Telescope Articles:

Unveiling rogue planets with NASA's Roman Space Telescope
New simulations show that NASA's Nancy Grace Roman Space Telescope will be able to reveal myriad rogue planets - freely floating bodies that drift through our galaxy untethered to a star.
Hubble makes the first observation of a total lunar eclipse by a space telescope
Taking advantage of a total lunar eclipse, astronomers using the NASA/ESA Hubble Space Telescope have detected ozone in Earth's atmosphere.
Stunning space butterfly captured by ESO telescope
Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas -- known as NGC 2899 -- appears to float and flutter across the sky in this new picture from ESO's Very Large Telescope (VLT).
Hubble marks 30 years in space with tapestry of blazing starbirth
NASA is celebrating the Hubble Space Telescope's 30 years of unlocking the beauty and mystery of space by unveiling a stunning new portrait of a firestorm of starbirth in a neighboring galaxy.
CHEOPS space telescope ready for scientific operation
CHEOPS has reached its next milestone: Following extensive tests in Earth's orbit, some of which the mission team was forced to carry out from home due to the coronavirus crisis, the space telescope has been declared ready for science.
Scientists build a 'Hubble Space Telescope' to study multiple genome sequences
Scientists can now simultaneously compare 1.4 million genetic sequences, helping classify how species are related to each other at far larger scales than previously possible.
Kepler Space Telescope's first exoplanet candidate confirmed
An international team of astronomers announced the confirmation of the first exoplanet candidate identified by NASA's Kepler Mission.
Space telescope detects water in a number of asteroids
Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time.
The Hubble Space Telescope discovers the most distant star ever observed
An international team, including researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL), participated in the discovery of a star at a distance of nine billion lightyears from Earth.
ASU astronomers to build space telescope to explore nearby stars
A new ASU-led mission will launch a small satellite telescope into space to study the environment in other solar systems around the Galaxy's most common type of star.
More Hubble Space Telescope News and Hubble Space Telescope Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.