Nav: Home

Black holes sometimes behave like conventional quantum systems

November 05, 2019

A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries. As a result they found that black holes thermalize the same way ordinary matter does. The results of their study were published in Physical Review Letters.

The physics of black holes remains an elusive chapter of modern physics. It is the sharpest point of tension between quantum mechanics and the theory of general relativity. According to quantum mechanics, black holes should behave like other ordinary quantum systems. Yet, there are many ways in which this is problematic from the point of view of Einstein's theory of general relativity. Therefore, the question of understanding black holes quantum mechanically remains a constant source of physical paradoxes. The careful resolution of such paradoxes should provide us a clue as to how quantum gravity works. That is why the physics of black holes is the subject of active research in theoretical physics.

One particularly important question is how black holes thermalize. A recent study undertaken by a group of Skoltech researchers found that in this regard black holes are not that different from ordinary matter. Namely, the emergence of equilibrium can be explained in terms of the same mechanism as in the conventional case. An analytical study of black holes became possible due to the rapidly developing theoretical tools of the so-called holographic duality. This duality maps certain types of conventional quantum systems to particular cases of quantum gravity systems. Although additional work is necessary to extend this similarity to thermalization dynamics, this work provides additional support for the paradigm that important aspects of black holes and quantum gravity in general can be explained in terms of the collective dynamics of conventional quantum many-body systems.

Furthermore, the work sheds new light on how conventional many-body quantum systems thermalize. It is widely accepted that isolated quantum mechanical systems can be accurately described by equilibrium statistical mechanics. The precise mathematical statement that provides such a description is called the Eigenstate Thermalization Hypothesis. Nevertheless, a proof of this hypothesis was lacking. Authors of the paper claim to partially fill this gap. "To the best of our knowledge, our work is the very first analytic proof of the Eigenstate Thermalization Hypothesis in spatially-extended systems, with all previous works on the subject (with very few exceptions) being numerical. We believe that the conceptual and technical novelty of our paper is of broad interest," explains Professor Anatoly Dymarsky of the Skoltech Center for Energy Science and Technology.

Skolkovo Institute of Science and Technology (Skoltech)

Related Black Holes Articles:

Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.
Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.
Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.
Growing old together: A sharper look at black holes and their host galaxies
The 'special relationship' between supermassive black holes (SMBHs) and their hosts -- something astronomers and physicists have observed for quite a while -- can now be understood as a bond that begins early in a galaxy's formation and has a say in how both the galaxy and the SMBH at its center grow over time, according to a new study from Yale University.
Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.
Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.
Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
The orderly chaos of black holes
During the formation of a black hole a bright burst of very energetic light in the form of gamma-rays is produced, these events are called gamma-ray bursts.
Mystery of coronae around supermassive black holes deepens
Researchers have used observations from the ALMA radio observatory to measure, for the first time, the strength of magnetic fields near two supermassive black holes at the centers of an important type of active galaxies.
More Black Holes News and Black Holes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at