Why is ice so slippery

November 05, 2019

The answer lies in a film of water that is generated by friction, one that is far thinner than expected and much more viscous than usual water through its resemblance to the "snow cones" of crushed ice we drink during the summer. This phenomenon was recently demonstrated by researchers from the CNRS and ENS-PSL, with support from the École polytechnique, in a study that appeared in Physical Review X on 2019, November 4.

The "slippery" nature of ice is generally attributed to the formation of a thin layer of liquid water generated by friction, which for instance allows an ice skater to "surf" on top of this liquid film. The properties of this thin layer of water had never been measured: its thickness remained largely unknown, while its properties, and even its very existence, were the subject of debate. What's more, since liquid water is known to be a poor lubricant, how could this liquid film reduce friction and make ice slippery?

To solve this paradox, researchers from the Laboratoire de physique de l'ENS (CNRS/ENS-PSL /Sorbonne Université/Université de Paris), in collaboration with a team from the Laboratoire d'hydrodynamique (LadHyX,CNRS/École polytechnique), developed a device equipped with a tuning fork--similar to those used in music--that can "hear" the forces at work during ice gliding with remarkable precision. Despite the instrument's size, which measures a few centimetres, it is sensitive enough to probe ice and analyse the properties of friction on a nanometric scale.

Thanks to their unique device, the scientists were able to clearly demonstrate for the first time that friction does indeed generate a film of liquid water. This film nevertheless offered a number of surprises: with a thickness measuring a few hundred nanometres to a micron, or one hundredth the thickness of a strand of hair, it is much thinner than theoretical estimates had suggested. Even more unexpectedly, this film is not at all "simple water," but consists of water that is as viscous as oil, with complex viscoelastic properties. This unexpected behaviour suggests that surface ice does not completely transform into liquid water, but instead ends up in a mixed state similar to "snow cones," a mix of ice water and crushed ice. The mystery of sliding on ice can therefore be found in the "viscous" nature of this film of water.

These results show that a thorough overhaul is needed of the theoretical descriptions that have been proposed to describe friction on ice. The unusual properties of meltwater are a key factor that has not been taken into consideration until now. This will help better understand the phenomenon of ice gliding, in winter sports for example, and will also help propose innovative solutions for increasing friction in order to avoid skidding on icy roads.


Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.