Nav: Home

Measuring cell-cell forces using snapshots from time-lapse videos of cells

November 05, 2019

Researchers at the University of California San Diego and the Allen Institute of Cell Science have developed a new computational method that can measure the forces cells exert on each other by analyzing time-lapse videos of cell colonies. The method could enable researchers to gain fundamental insights into what role intercellular forces play in cellular biology and how they differ in healthy and diseased states.

The forces that cells generate are of interest to researchers because they drive and regulate various processes in cell and tissue development. Information about these forces provides a framework for engineering artificial tissues and understanding how cancer cells develop and spread.

However, measuring intercellular forces has been an ongoing technical challenge in the field. Many existing techniques are invasive--they require physical intervention and can alter cell behavior after taking measurements.

In this study, researchers developed a way to measure intercellular forces without disturbing the activity of cell colonies. The findings were published Nov. 5 in Biophysical Journal.

UC San Diego mechanical engineering professor Padmini Rangamani, her Ph.D. student and first author of the paper Ritvik Vasan and their collaborators, Dave Williams and Molly Maleckar at the Allen Institute, developed the new approach. Their computational method analyzes microscopy images taken from videos of cell colonies, uses information from previous frames in the video to inform estimations in subsequent frames, and then computes the cell-cell forces. The method combines biophysical modeling from first-principles (Young's Laplace Law for the shape-tension relationship) with data-driven modeling using cell shapes from microscopy movies.

The team hopes that this will be a valuable data analysis tool for researchers in the biophysics community.
-end-
Paper title: "DLITE uses cell-cell interface movement to better infer cell-cell tensions."

University of California - San Diego

Related Cellular Biology Articles:

A new understanding of everyday cellular processes
We use cells to breathe, to moderate body temperature, to grow and many other every day processes, however the cells in these processes are so complex its left scientists perplexed into how they develop in different environments.
A cellular mechanism protecting against cancer
Susanne Hellmuth and Olaf Stemmann from the University of Bayreuth have discovered a natural protective mechanism that leads to the programmed death of potentially diseased cells.
Molecular networks serve as cellular blueprints
Networks are at the heart of everything from communications systems to pandemics.
Changes in cellular degradation hubs can lead to cancer
Cancer cells grow and divide in an uncontrolled manner. A new study from Uppsala University now shows how alterations in a cell's degradation hubs, called lysosomes, can cause abnormal cell growth.
A scaffold at the center of our cellular skeleton
When the cells stop dividing, the centrioles migrate to the plasma membrane and allow the formation of primary and mobile cilia, which are used for the transfer of information and the genesis of movement.
A deep dive into cellular aging
Scientists at Sanford Burnham Prebys and Harvard University have discovered that mitochondria trigger senescence, the sleep-like state of aged cells, through communication with the cell's nucleus--and identified an FDA-approved drug that helped suppress the damaging effects of the condition in cells and mice.
New membranes for cellular recycling
Cells produce the shell of the autophagosomes on the spot.
Superfast insights into cellular events
Even more detailed insights into the cell will be possible in future with the help of a new development in which Goethe University was involved: Together with scientists from Israel, the research group led by Professor Harald Schwalbe has succeeded in accelerating a hundred thousand-fold the nuclear magnetic resonance (NMR) method for investigating RNA.
New assay assesses multiple cellular pathways at once
A novel technological approach developed by researchers at Baylor College of Medicine expands from 2 to 6 the number of molecular pathways that can be studied simultaneously in a cell sample with the dual luciferase assay, a type of testing method commonly used across biomedical fields.
A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.
More Cellular Biology News and Cellular Biology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.