Nav: Home

Physics of windshield-cracking raindrops could demolish kidney stones

November 05, 2019

DURHAM, N.C. -- A plane has to be going pretty fast for a mere raindrop to crack its windshield, but it can happen. Now, new models of the physics behind the improbable feat may just help doctors crack kidney stones to pieces.

When supersonic jets were first being developed for commercial use in the 1960s, researchers discovered a curious phenomenon that sometimes occurs on test flights through rainforests. Even though raindrops weigh almost nothing, they are capable of creating ring-shaped cracks in the jets' substantial windshields.

Although scientists initially had difficulty explaining this curiosity, Professors Frank Philip Bowden and John Field of the University of Cambridge eventually recognized surface waves as the culprits. Because surface waves spread in only two dimensions, they pack a much more powerful punch than their three-dimensional counterparts. Certain details of the phenomenon, however, have remained poorly understood due to a lack of mathematics to describe it and experimental setups to validate proposed models.

In a new paper published Nov. 1 in Physical Review Research, Pei Zhong, professor of mechanical engineering and materials science at Duke University, and his former graduate student Ying Zhang, now an acoustical engineer for Bose, have closed that gap in scientific knowledge.

The pair created an experimental system to visualize the stress created by such surface waves. They put a lithotripsy device designed to shatter kidney stones with soundwaves in a vat of water covered by a sheet of glass, then set off a point-source explosion that expanded as a spherical shock wave. Depending on the angle at which the shockwave hits the glass, it can produce surface waves that spread on the water-glass boundary.

With a high-speed camera, the team measured the speed of various elements of a shock wave over the mere moments it takes to propagate through the glass. Zhang used those measurements to validate a finite element model constructed using a multiphysics software called COMSOL. The models successfully reproduced the characteristics of a series of bulk and surface waves often observed in such situations, including one that may save people from needing surgery to remove kidney stones.

The researchers discovered that the type of wave primarily responsible for most of the stress and damage -- called a leaky Rayleigh wave -- propagates much faster than a second type of wave called an evanescent wave. While they're created at the same time on the water-glass boundary, the leaky Rayleigh wave eventually pulls away from the evanescent wave, which is the moment and location of the highest tensile stress caused by the phenomenon.

They also discovered that the circular cracks originally observed on the supersonic jet windshields don't necessarily form at this point -- they require an existing imperfection in the glass to get started. But once initiated, the crack propagates along a circular trajectory, following the first principal stress in the solid set off by the advancing leaky Rayleigh wave.

"The challenge for treating kidney stones is to reduce the stones to very fine fragments so the doctors don't have to follow up with any ancillary procedures," said Zhong. "Based on the insight gained through this model, we may be able to optimize the shape of the shock waves and lithotripter design to create more tension on the surface of the kidney stones to open up the defects more efficiently."
-end-
This work was supported by the National Institutes of Health (R37-DK052985-22).

CITATION - "Nanosecond Shock Wave-Induced Surface Acoustic Waves and Dynamic Fracture at Fluid-Solid Boundaries," Ying Zhang, Chen Yang, Hao Qiang, and Pei Zhong. Physical Review Research, Nov. 1, 2019. DOI: 10.1103/PhysRevResearch.1.033068

Duke University

Related Stress Articles:

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.
How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.