Mutations linked to expression of genes associated with complex traits

November 05, 2019

Hard-to-study mutations in the human genome, called short tandem repeats, known as STRs or microsatellites, are implicated in the expression of genes associated with complex traits including schizophrenia, inflammatory bowel disease and even height and intelligence.

That's the conclusion of a study published in the Nov. 1 issue of Nature Genetics by a team of researchers at the University of California San Diego. They were led by Melissa Gymrek, a UC San Diego professor of computer science and medicine, and Alon Goren, a UC San Diego professor of medicine.

Short tandem repeats are composed of sequences of between one to six of the DNA's basic components, called nucleotides, repeat over and over again, sometimes up to hundreds or thousands of times.

These mutations have already been implicated in about 30 conditions. The best known is perhaps Huntington's Disease, which causes the progressive breakdown of nerve cells in the brain. About 30,000 people suffer from the condition in the United States. These people all have more than 40 copies of a specific repeat, known as the CAG trinucleotide. The more copies they have, the sooner they are affected by the disease and the more severe it is.

But until now, mostly due to lack of proper datasets, genome-wide studies of the effects of short tandem repeats on gene expression had only found limited connections.

In this study, by leveraging whole genome sequencing and expression data for 17 tissues from the Genotype-Tissue Expression Project (GTEx) the team identified short tandem repeats in which the expression of nearby genes is impacted by the number of occurrences of the repetitive units in the genome. Researchers named these eSTRs - expression associated short tandem repeats. They found more than 28,000 such expression associated short tandem repeats in the genome. The 28,000 eSTRs can be found at http://webstr.gymreklab.com/ The website allows users to interactively explore eSTR results as well as additional information for each STR, including mutation rates and genetic variation across different populations.

The group then used statistical methods to measure the probability that each of these effects is significant. By doing so, they identified hundreds of such eSTRs which are responsible for effects previously found by whole genome analysis studies. The study results implicate specific repeat mutations in traits including height and schizophrenia, inflammatory bowel disease and intelligence.

"Overall, our results support the hypothesis that these mutations contribute to a range of human phenotypes and will serve as a valuable resource for future studies of complex traits," Gymrek said.
-end-


University of California - San Diego

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.