Model of enzyme's structure could spur new therapies

November 06, 2011

PROVIDENCE, R.I. [Brown University] -- In many pharmaceutical company and university laboratories, scientists are looking closely at kinase complexes because the enzymes play key roles in essential cell functions. By taking unusual steps to examine a kinase complex, researchers at Brown University and the National Institutes of Health have found a sought-after prize: an unprecedentedly detailed description of its structure complete with a rare location on its structure that could be a target for new therapeutic drugs.

"Disregulation always leads to disease," said Wolfgang Peti, associate professor of medicine and chemistry at Brown University and senior author of a paper published online Nov. 6 in Nature Chemical Biology. "To make better drugs, what we want to do is look for individual things that are different between different complexes. The problem is we didn't know where those non-common spots are. We didn't have the structures that tell us the story. We were the first to get one of those structures."

The complex that Peti, Brown colleague Rebecca Page, and their team has now characterized is hardly a household name: p38alpha:HePTP. It does however, matter in millions of households around the world. It is a member of the MAP kinase family, enzymes that regulate cell functions such as growth and inflammation. Diseases that correlate with disruptions to MAP kinase signaling include Alzheimer's disease, rheumatoid arthritis, and cancer.

To determine the structure, the group took the rare step of combining techniques including nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, using the National Synchrotron Light Source at Brookhaven National Laboratory on Long Island. The result was the clearest picture yet of a MAP kinase complex, which turns out to measure a mere 108 Angstroms (tenths of billionths of a meter) long by 30 Angstroms wide. The resolution of their resulting model is on the scale of individual atoms.

To elucidate their model, they probed the complex to discover areas where p38alpha binds to different HePTP-derived peptides. They found a specific area called "KIS" that is responsible for how the p38alpha:HePTP complex forms in its unique way.

"That really showed there are these areas outside the common sites that are likely unique between different complexes," Peti said.

The next step is to learn more about KIS and the role it could ultimately play in disregulation and disease. In their paper, the authors expressed optimism that their newfound knowledge will have clinical relevance: "These results provide novel insights into the molecular interactions that regulate the strength and duration of MAP kinase signaling and, in turn, provide novel avenues for therapeutic interventions of MAP kinase-related diseases."
-end-
In addition to Peti and Page, other Brown authors include lead author Dana Francis and co-author Dorothy Koveal. Authors from the National Institute of Diabetes and Digestive and Kidney Diseases were Bartosz Rozycki and Gerhard Hummer.

The American Cancer Society funded the research.

Brown University

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.