Humans, chimpanzees and monkeys share DNA but not gene regulatory mechanisms

November 06, 2012

Humans share over 90% of their DNA with their primate cousins. The expression or activity patterns of genes differ across species in ways that help explain each species' distinct biology and behavior.

DNA factors that contribute to the differences were described on Nov. 6 at the American Society of Human Genetics 2012 meeting in a presentation by Yoav Gilad, Ph.D., associate professor of human genetics at the University of Chicago.

Dr. Gilad reported that up to 40% of the differences in the expression or activity patterns of genes between humans, chimpanzees and rhesus monkeys can be explained by regulatory mechanisms that determine whether and how a gene's recipe for a protein is transcribed to the RNA molecule that carries the recipe instructions to the sites in cells where proteins are manufactured.

In addition to improving scientific understanding of the uniqueness of humans, studies such as the investigation conducted by Dr. Gilad and colleagues could have relevance to human health and disease.

"Through inter-species' comparisons at the DNA sequence and expression levels, we hope to identify the genetic basis of human specific traits and in particular the genetic variations underlying the higher susceptibility to certain diseases such as malaria and cancer in humans than in non-human primates," said Dr. Gilad.

Dr. Gilad and his colleagues studied gene expression in lymphoblastoid cell lines, laboratory cultures of immortalized white blood cells, from eight humans, eight chimpanzees and eight rhesus monkeys.

They found that the distinct gene expression patterns of the three species can be explained by corresponding changes in genetic and epigenetic regulatory mechanisms that determine when and how a gene's DNA code is transcribed to a messenger RNA (mRNA) molecule.

Dr. Gilad also determined that the epigenetics process known as histone modification also differs in the three species. The presence of histone marks during gene transcription indicates that the process is being prevented or modified.

"These data allowed us to identify both conserved and species-specific enhancer and repressor regulatory elements, as well as characterize similarities and differences across species in transcription factor binding to these regulatory elements," Dr. Gilad said.

Among the similarities among the three species were the promoter regions of DNA that initiated transcription of a particular gene.

In all three species, Dr. Gilad's lab found that transcription factor binding and histone modifications were identical in over 67% of regulatory elements in DNA segments that are regarded as promoter regions.
-end-
The researchers presentation is titled, "Genome-wide comparison of genetic and epigenetic regulatory mechanisms in primates."

About ASHG

The American Society of Human Genetics is the primary professional membership organization for nearly 8,000 human genetics specialists worldwide. The ASHG Annual Meeting is the world's largest gathering of human genetics professionals and a forum for renowned experts in the field.

American Society of Human Genetics

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.