For young baseball players, light bats don't hit too fast

November 06, 2013

PROVIDENCE, R.I. [Brown University] -- With some fierce pitching on display, this year's World Series featured its share of shattered wood bats. That's a problem many youth baseball players avoid by using metal or composite carbon fiber bats. But ever since those bats entered the game, people have debated whether and when non-wood bats make the ball fly faster. That's because non-wood bats transfer energy to the ball better, a phenomenon called the "trampoline effect."

The concern is that faster hits not only make the game harder for the defense but also more dangerous. Such concerns have led to uniform bat regulations in college and high school baseball, but amid uncertainty about how non-wood bats perform in the hands of younger players, the rules are less consistent for that age group.

"Everyone wants baseball to be safe and enjoyable," said biomechanics scientist Glenn Fleisig, chair of the medical and safety advisory committee of USA Baseball, the nation's governing body for all amateur and youth baseball. "The time has come for us to have coordinated rules for bat performance in youth baseball, but the bat regulations for high school and up cannot be simply applied to youth baseball."

What's needed is more scientific data relevant to younger teens. In a study now online in the Journal of Applied Biomechanics, researchers at Brown University and the Lifespan health system took a swing at gathering some. In fact, Joseph "Trey" Crisco, professor of orthopaedics, and colleagues recruited 22 volunteer hitters aged 13 to 18 to take about 3,400 swings with 13 different youth baseball bats (all of the non-wood bats tested were too light to be allowed in high school or college play).

What the research team found is that while non-wood bats did hit the ball faster overall, that varied widely based on the bat model and the batter's age. Among the 10 non-wood bats studied, only three allowed players to hit the ball significantly faster than the three wood bats. One bat produced significantly slower hits, and six other bats produced hits of essentially the same speed as wood.

For the youngest teen baseball players, many of whom need lighter bats to participate at all, one of the most significant findings was that lighter non-wood weight bats did not launch the ball at significantly higher speeds than wood bats.

"Professor Crisco's work is going to be the foundation of data for making regulations and recommendations for youth baseball bats going forward," said Fleisig, who is also research director of the American Sports Medicine Institute.

Weight, energy and strength

At a given pitch speed, three independent factors influence the speed of a batted ball: the bat's mass and its distribution along its length, called the "moment of inertia" (MOI); the bat's degree of energy transfer, or its "trampoline effect"; and the speed of the swing, a consequence of the hitter's strength and biomechanics.

To measure these factors, Crisco and his team set up a batting cage and a pitching machine in a Brown gym. They used an array of eight cameras shooting 300 frames a second to capture the complete motions of specially marked bats and balls. The video systems tracked the pitch speed, the bat speed, the ball speed and the place on the bat where the ball made contact.

Among the younger ballplayers in the study, lighter non-wood bats allowed them to swing somewhat faster than with wood, but the balls didn't go any faster, despite their higher trampoline effect. For these players, the much lower bat mass meant much less ball momentum overall.

"At the youth level for the bats that we studied, even though there was a trampoline effect, the loss of momentum overcompensated for it so no matter how hot the trampoline effect was, the bats were so light they still were not outperforming wood substantially," Crisco said.

Among 13- to 15-year-olds, swing speed slowed significantly as bat mass increased, Crisco found. That meant that even the fastest-hitting bat was not as potent in the hands of the younger players as the older ones.

The non-wood bat that launched the ball fastest, called "Model A," had a weight and MOI that was on par with a light wood bat, but it had a much higher trampoline effect than the wood bats. The ball speed advantage it gave each hitter depended on the hitter's age. The 13-year-old players hit balls 7.4 miles an hour faster with model A than with the wood bats, but the 18-year-old hitters whacked the ball 11.6 miles an hour faster with model A (which they could never use in a real game), than with wood.

Although the study, first published Oct. 11, helps resolve the effect of the interplay between bat physics and batter biomechanics in youth baseball, the work of monitoring bats and their performance will likely continue, Crisco said.

"I think we have a very good handle on what's going on now with these bats," Crisco said. "The challenge is [that manufacturers] are going to come up with a new material and a new construction that our assumptions may or may not be valid for."

In other words, the bat goes on.
-end-
In addition to Crisco, the study's other authors are Michael Rainbow, Joel Schwartz, and Bethany Wilcox.

USA Baseball and the National Operating Committee on Standards for Athletic Equipment funded the study.

Brown University

Related Bats Articles from Brightsurf:

These masked singers are bats
Bats wear face masks, too. Bat researchers got lucky, observing wrinkle-faced bats in a lek, and copulating, for the first time.

Why do bats fly into walls?
Bats sometimes collide with large walls even though they detect these walls with their sonar system.

Vampire bats social distance when they get sick
A new paper in Behavioral Ecology finds that wild vampire bats that are sick spend less time near others from their community, which slows how quickly a disease will spread.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

The genetic basis of bats' superpowers revealed
First six reference-quality bat genomes released and analysed

Bats offer clues to treating COVID-19
Bats carry many viruses, including COVID-19, without becoming ill. Biologists at the University of Rochester are studying the immune system of bats to find potential ways to ''mimic'' that system in humans.

A new social role for echolocation in bats that hunt together
To find prey in the dark, bats use echolocation. Some species, like Molossus molossus, may also search within hearing distance of their echolocating group members, sharing information about where food patches are located.

Coronaviruses and bats have been evolving together for millions of years
Scientists compared the different kinds of coronaviruses living in 36 bat species from the western Indian Ocean and nearby areas of Africa.

Bats depend on conspecifics when hunting above farmland
Common noctules -- one of the largest bat species native to Germany -- are searching for their fellows during their hunt for insects above farmland.

Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.

Read More: Bats News and Bats Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.