X-rays reveal inner structure of the Earth's ancient magma ocean

November 06, 2013

This news release is available in German. Using the world's most brilliant X-ray source, scientists have for the first time peered into molten magma at conditions of the deep Earth mantle. The analysis at DESY's light source PETRA III revealed that molten basalt changes its structure when exposed to pressure of up to 60 gigapascals (GPa), corresponding to a depth of about 1400 kilometres below the surface. At such extreme conditions, the magma changes into a stiffer and denser form, the team around first author Chrystèle Sanloup from the University of Edinburgh reports in the scientific journal Nature. The findings support the concept that the early Earth's mantle harboured two magma oceans, separated by a crystalline layer. Today, these presumed oceans have crystallised, but molten magma still exists in local patches and maybe thin layers in the mantle.

"Silicate liquids like basaltic magma play a key role at all stages of deep Earth evolution, ranging from core and crust formation billions of years ago to volcanic activity today," Sanloup emphasised. To investigate the behaviour of magma in the deep mantle, the researchers squeezed small pieces of basalt within a diamond anvil cell and applied up to roughly 600,000 times the standard atmospheric pressure. "But to investigate basaltic magma as it still exists in local patches within the Earth's mantle, we first had to melt the samples," explained co-author Zuzana Konôpková from DESY, who supported the experiments at the Extreme Conditions Beamline (ECB), P02 at PETRA III.

The team used two strong infrared lasers that each concentrated a power of up to 40 Watts onto an area just 20 micrometres (millionths of a metre) across - that is about 2000 times the power density at the surface of the sun. A clever alignment of the laser optics allowed the team to shoot the heating lasers right through the diamond anvils. With this unique setup, the basalt samples could be heated up to 3,000 degrees Celsius in just a few seconds, until they were completely molten. To avoid overheating of the diamond anvil cell which would have skewed the X-ray measurements, the heating laser was only switched on for a few seconds before and during the X-ray diffraction patterns were taken. Such short data collection times, crucial for this kind of melting experiments, are only possible thanks to the high X-ray brightness at the ECB. "For the first time, we could study structural changes in molten magma over such a wide range of pressure," said Konôpková.

The powerful X-rays show that the so-called coordination number of silicon, the most abundant chemical element in magmas, in the melt increases from 4 to 6 under high pressure, meaning that the silicon ions rearrange into a configuration where each has six nearest oxygen neighbours instead of the usual four at ambient conditions. As a result, the basalt density increases from about 2.7 grams per cubic centimetre (g/ccm) at low pressure to almost 5 g/ccm at 60 GPa. "An important question was how this coordination number change happens in the molten state, and how that affects the physical and chemical properties," explained Sanloup. "The results show that the coordination number changes from 4 to 6 gradually from 10 GPa to 35 GPa in magmas, and once completed, magmas are much stiffer, that is much less compressible." In contrast, in mantle silicate crystals, the coordination number change occurs abruptly at 25 GPa, which defines the boundary between the upper and lower mantle.

This behaviour allows for the peculiar possibility of layered magma oceans in the early Earth's interior. "At low pressure, magmas are much more compressible than their crystalline counterparts, while they are almost as stiff above 35 GPa," explained Sanloup. "This implies that early in the history of the Earth, when it started crystallising, magmas may have been negatively buoyant at the bottom of both, upper and lower mantle, resulting in the existence of two magma oceans, separated by a crystalline layer, as has been proposed earlier by other scientists."

At the high pressure of the lower Earth mantle, the magma becomes so dense that rocks do not sink into it anymore but float on top. This way a crystallised boundary between an upper and a basal magma ocean could have formed within the young Earth. The existence of two separate magma oceans had been postulated to reconcile geochronological estimates for the duration of the magma ocean era with cooling models for molten magma. While the geochronological estimates yield a duration of a few ten million years for the magma ocean era, cooling models show that a single magma ocean would have cooled much quicker, within just one million years. A crystalline layer would have isolated the lower magma ocean thermally and significantly delayed its cooling down. Today, there are still remnants of the basal magma ocean in the form of melt pockets detected atop the Earth's core by seismology.
-end-
The research team included members of DESY and the Universities of Edinburgh, Amsterdam and Frankfurt/Main and the Université Pierre et Marie Curie in Paris.

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 percent) and the German federal states of Hamburg and Brandenburg (10 percent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Reference: Structural change in molten basalt at deep mantle conditions; Chrystèle Sanloup, James W. E. Drewitt, Zuzana Konôpková, Philip Dalladay-Simpson, Donna M. Morton, Nachiketa Rai, Wim van Westrenen & Wolfgang Morgenroth; Nature, 2013; DOI: 10.1038/nature12668

Deutsches Elektronen-Synchrotron DESY

Related Magma Articles from Brightsurf:

Magma 'conveyor belt' fuelled world's longest erupting supervolcanoes
International research led by geologists from Curtin University has found that a volcanic province in the Indian Ocean was the world's most continuously active -- erupting for 30 million years -- fuelled by a constantly moving 'conveyor belt' of magma.

Deep magma facilitates the movement of tectonic plates
A small amount of molten rock located under tectonic plates encourages them to move.

3D magnetotelluric imaging reveals magma recharging beneath Weishan volcano
Researches have succeeded in obtaining a high-resolution 3D resistivity model of approximately 20 km depth beneath the Weishan volcano in the Wudalianchi volcanic field (WVF) for the first time.

Study proves that magma chambers can be totally molten
The paper shows that basaltic magma chambers may develop as large bodies of crystal-free melts in the Earth's crust.

New study takes the pulse of a sleeping supervolcano
Under the volcanoes in the Andes where Chile, Argentina and Bolivia meet, there is a gigantic reservoir of molten magma.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Research shows why there's a 'sweet spot' depth for underground magma chambers
Computer models show why eruptive magma chambers tend to reside between six and 10 kilometers underground.

'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.

Magma is the key to the moon's makeup
For more than a century, scientists have squabbled over how the Earth's moon formed.

'Amazing snapshots' plumb volcanic depths
Research shedding light on the internal 'plumbing' of volcanoes may help scientists better understand volcanic eruptions and unrest.

Read More: Magma News and Magma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.