Joslin scientists discover new step in a molecular pathway responsible for birth defects

November 06, 2014

BOSTON - (November 6, 2014) - Mary R. Loeken, Ph.D., Investigator in the Section on Islet Cell and Regenerative Biology at Joslin Diabetes Center and Associate Professor of Medicine at Harvard Medical School, has discovered a molecular pathway responsible for neural tube defects in diabetic pregnancies. Her latest research findings in this pathway were published in the October issue of Diabetes.

For 20 years, scientists have known of a gene involved in neural tube defects (such as spina bifida), but until now it was not known exactly what causes this gene to malfunctions during diabetic pregnancies.

A neural tube is the body's first step in assembling the spinal cord and the brain, which takes place within the first two to four weeks of gestation. Since the early 1990's, scientists have known that the gene Pax3 is required for closure of the neural tube.

Diabetic women who become pregnant run a greater than average risk that their baby, while the tube is folding shut, will develop anencephaly, a fatal disorder, or spina bifida, which can lead to motor impairment and other disabilities. For over two decades Dr. Loeken has focused her research on discovering how and why the malfunction of Pax3 can occur in diabetic women when they are pregnant.

In previous research, she found that Pax3 is sensitive to high levels of glucose. When exposed to hyperglycemic events, Pax3 doesn't turn on as much as it is supposed to. This is particularly dangerous as it occurs during the first month of pregnancy when a woman with diabetes may not be aware that she is pregnant and therefore may not take measures to have good control of her blood glucose.

In her paper this month in Diabetes, Dr. Loeken describes what prevents Pax3 from switching on. The key is an enzyme called DNA Methyltransferase (Dnmt), specifically subtype Dnmt 3b. DNA Methyltransferases are a family of enzymes responsible for altering the chemical building blocks of DNA, specifically adding a methyl group to cytosine (one of the four main bases in DNA's "rungs").

In normal development, Dnmt adds methyl groups to DNA around the Pax3 gene and then abruptly tapers off before the Pax3 gene comes on. Dr. Loeken discovered that glucose over-stimulates the DNA Methyltransferase 3b. The overactive enzyme keeps adding methyl groups to the cytosines near the Pax3 gene and prevents Pax3 from turning on so that it can close the neural tube.

Although it would appear that the way to prevent neural tube defects would be to stop Dnmt3b, Dr. Loeken cautions against such radical treatment. "There are actually drugs that can be used to inhibit DNA methylation; however we wouldn't use a drug to interfere with this pathway because this is a tightly regulated process."

According to Dr. Loeken, Dnmt3b isn't an entirely bad enzyme; there are many genes critical for development that need to be switched on or off by DNA methyltransferases. Dnmt3b is essential for embryonic survival. "However," says Dr. Loeken, "It does allow us to elucidate a biochemical pathway that we really didn't understand very well before."

A treatment that may come out of this research is better stem cell therapy. "We might be able to exploit these pathways to make more competent stem cells to repair the congenital malformations," says Dr. Loeken. "And that's not just limited to diabetes."

Neural tube defects happen in non-diabetic pregnancies as well, affecting about 1,500 births in the US every year and around 300,000 worldwide. Dr. Loeken's research has already caught the attention of other scientists working on neural tube defects. Together, they may illuminate causes and treatments for all babies who develop these malformations.

Until a treatment is developed, the best method for safeguarding against complications in diabetic pregnancies, Dr. Loeken points out, is to rigidly control a pregnant woman's blood glucose levels beginning before she is pregnant, and to plan their pregnancies.

"If the mother is under very tight glycemic control and avoids excursions above the level that will drive glucose into the cells, then all the events downstream, including the hypermethylation, should not occur."
-end-
Reference:

Wei, D & Loeken, M. Increased DNA methyltransferase 3b (dnmt3b)-mediated CpG island methylation stimulated by oxidative stress inhibits expression of a gene required for neural tube and neural crest development in diabetic pregnancy. Diabetes; vol 63, pp. 3512-22, October 2014

Funding:

This research was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases under award number R01-DK- 58300, and was assisted by core facilities supported by a Diabetes Endocrine Research Center grant, P30-DK-036836, to the Joslin Diabetes Center, and by the DNA Resource Core provided by the Dana-Farber/Harvard Cancer Center.

About Joslin Diabetes Center

Joslin Diabetes Center, based in Boston, Massachusetts, undertakes diabetes research, clinical care, education and health and wellness programs on a global scale. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real progress in preventing and curing diabetes. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School, and is recognized worldwide for driving innovative solutions in diabetes prevention, research, education, and care.

Our mission is to prevent, treat and cure diabetes. Our vision is a world free of diabetes and its complications. For more information, visit http://www.joslin.org.

About Joslin Research

Joslin Research comprises the most comprehensive and productive effort in diabetes research under one roof anywhere in the world. With 30‐plus faculty‐level investigators, Joslin researchers focus on unraveling the biological, biochemical and genetic processes that underlie the development of type 1 and type 2 diabetes and related complications.

Joslin research is highly innovative and imaginative, employing the newest tools in genetics, genomics and proteomics to identify abnormalities that may play a role in the development of diabetes and its complications. Joslin Clinic patients, and others with diabetes, have the option of participating in clinical trials at Joslin to help translate basic research into treatment innovations.

Joslin has one of the largest diabetes training programs in the world, educating 150 M.D. and Ph.D. researchers each year, many of whom go on to head diabetes initiatives at leading institutions all over the globe. For more information, visit http://www.joslinresearch.org.

Joslin Diabetes Center

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.