Gut microbiota regulates antioxidant metabolism

November 06, 2015

A recently published study shows that gut microbiota regulates the glutathione and amino acid metabolism of the host. Glutathione is a key antioxidant, found in every cell in our body. Deficiency of glutathione contributes to oxidative stress, which plays a major role in several lifestyle diseases.

The functional output and diversity of gut microbiota are important modulators for the development of various human disorders. Obesity, type 2 diabetes, atherosclerosis, non-alcoholic fatty liver disease as well as the opposite end of the spectrum, for example malnutrition, have been associated with imbalance in human gut microbiota. Hence, the interactions between the gut microbiota, host tissues of the gastrointestinal tract and other peripheral tissues as well as diet are known to be highly relevant for the health of the host.

In a recent paper published in Molecular Systems Biology, researchers at Chalmers University of Technology, the Royal Institute of Technology and the University of Gothenburg in Sweden revealed that gut microbiota regulates the glutathione and amino acid metabolism of the host. The study, highlighted on the cover of the journal, shows how a novel integrative approach can be used to reveal the metabolic differences between germ-free and conventionally raised mice through a combination of proteomics, transcriptomics and metabolomics data as well as tissue-specific metabolic modeling.

Glutathione is our body's most powerful antioxidant and the main detoxifying agent in the body. It plays a vital role in enabling the immune system, nutrient metabolism and regulation of other important cellular events. Glutathione is a very small protein, produced inside the cells from three amino acids ultimately obtained from our food or supplementation. The deficiency of glutathione contributes to oxidative stress, which plays a major role in the mechanisms of above mentioned complex disorders.

In the study, a generic map of mouse metabolism was created, and tissue-specific computer models for major mouse tissues were generated. Through integration of high throughput experimental data, the researchers found that the microbiota in the small intestine consumes glycine, which is one of the three amino acids required for the synthesis of the glutathione.

In order to confirm the results of the computer-based simulations, the level of the amino acids in the portal vein of the mice was measured. Moreover, a lower level of glycine was observed in liver and colon tissues, which indicates that the gut microbiota regulates glutathione metabolism, not only in the small intestine but also in the liver and the colon.

"Some bacteria in our gut consume glycine, which is required for the synthesis of the glutathione, and imbalances in the composition of the bacteria may lead to the progression of the chronic diseases", says Chalmers researcher Adil Mardinoglu, first author of the paper.

In previous independent studies, imbalances in the plasma level of glycine as well as other amino acids have been shown to exist in obesity, type 2 diabetes and non-alcoholic fatty liver disease.

"Strikingly, the plasma levels of glycine are decreased in all subjects with the above-mentioned diseases compared to the healthy subjects", says Professor Jens Nielsen at Chalmers. "In this context, it may be of interest to study the microbial amino acids in the human gut in relation to their potential role in the development of such metabolism-related disorders.

"The discovery that the bacteria in our small intestine consume glycine and regulate glutathione metabolism may led to the development of food products that can deliver beneficial bacteria (probiotics) to the gut. The results of the study can help us understand how bacteria play a role in the metabolic processes involved in the development of obesity, type 2 diabetes, non-alcoholic fatty liver disease and malnutrition."
-end-
The study "The gut microbiota modulates host amino acid and glutathione metabolism in mice" has been published in the Molecular Systems Biology journal: http://msb.embopress.org/content/11/10/834

Chalmers University of Technology

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.