Researchers discover new pathway for handling stress

November 06, 2017

Balance is key to many physiological functions and it is especially true in the production and regulation of proteins. A balance of proteins in cells helps maintain health, but an unhealthy clumping can lead to a variety of diseases, including those connected to aging such as Alzheimer's.

Researchers at the University of California San Diego studying how animals respond to infections have found a new pathway that may help in tolerating stressors that damage proteins.

Naming the pathway the Intracellular Pathogen Response or "IPR," the scientists say it is a newly discovered way for animals to cope with certain types of stress and attacks, including heat shock.

The study, published Nov. 2 in Current Biology, was led by Kirthi Reddy in the lab of Emily Troemel, a professor in the Cell and Developmental Biology Section in UC San Diego's Division of Biological Sciences.

The researchers studied how roundworms (C. elegans) regulate expression of genes that are turned on by infection with microsporidia, which are natural intracellular pathogens of worms as well as humans.

"The species of microsporidia we study only grows inside the intestine of the worm--it can't grow outside," said Troemel. "C. elegans has a transparent body plan, which facilitates watching microsporidia, how it grows and what it does to host cells. Most recently we've focused on how C. elegans turns on IPR genes in response to microsporidia and heat stress."

During the study, genetic screening revealed the identity of pals-22, a gene used by roundworms to regulate IPR pathway gene expression. Roundworm mutants of pals-22 always have IPR genes on, which causes increased tolerance of heat shock and other types of stress. These IPR effects appear to be independent of previously described pathways. The researchers say the discovery has implications for many diseases related to protein accumulation since comparable genes can often be linked in humans.

The IPR discovery is recent enough that the researchers still need more analysis to understand how it actually works. Initial ideas are that the IPR helps mark damaged proteins inside cells.

"At this point we hypothesize that the IPR pathway involves putting tags on proteins to send them to the proteasome, which is the cellular trash can," said Troemel. "We are actively testing this model with the goal that we will decipher a new way that animals can cope with stress."
-end-
Coauthors of the study include UC San Diego's Tal Dror, Jessica Sowa, Johan Panek, as well as Kevin Chen, Efrem Lim and David Wang from Washington University in St. Louis.

University of California - San Diego

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.