Gelatin accelerates healing of the blood brain barrier in acute brain injury

November 06, 2017

Researchers already know that gelatin-covered electrode implants cause less damage to brain tissue than electrodes with no gelatin coating. Researchers at the Neuronano Research Centre (NRC) at Lund University in Sweden have now shown that microglia, the brain's cleansing cells, and the enzymes that the cells use in the cleaning process, change in the presence of gelatin.

"Knowledge about the beneficial effects of gelatin could be significant for brain surgery, but also in the development of brain implants", say the researchers behind the study.

Our brains are surrounded by a blood brain barrier which protects the brain from harmful substances that could enter it via the bloodstream. When the barrier is penetrated, as in the case of biopsy or brain surgery for example, leaks can occur and cause serious inflammation.

Researchers at the NRC have previously shown that gelatin accelerates brain tissue healing and reduces damage to nerve cells in the case of electrode implants, but only now are they starting to understand how.

The researchers used sedated rats to investigate how the brain is repaired after being subjected to an injury. Gelatin-coated needles were used in one group, and needles without gelatin in the other.

"The use of gelatin-coated needles reduced or eliminated the leakage of molecules (which normally don't get through) through the blood brain barrier within twenty-four hours. Without gelatin, the leakage continued for up to three days", says Lucas Kumosa, one of the researchers behind the study, which was recently published in the research journal Acta Biomaterialia.

FEWER INFLAMMATORY CLEANING CELLS

When there is an injury to the brain, microglial cells - the brain's cleaning cells - gather at the site. They clean up, but can also damage the nerve cell tissue through enzymes they release. In their study, the researchers observed a change in which cleaning cells moved towards the injury site.

"When we used gelatin, we saw only a small number of the inflammatory microglial cells. Instead, we observed cells of a different kind, that are anti-inflammatory, which we believe could be significant in accelerating healing", explains Lucas Kumosa.

The hypothesis is that the potentially damaging enzymes are occupied with the gelatin instead.

"Gelatin is a protein and its decomposition releases amino-acids that we believe could promote the reconstruction of blood vessels and tissue", explains Jens Schouenborg, professor of neurophysiology at Lund University.

SURGICAL SIGNIFICANCE

Research is currently underway on how electrodes implanted in the brain could be used in the treatment of various diseases, such as epilepsy or Parkinson's. A major challenge has been to find ways of reducing damage to the area when using such implants. "Although the research field of brain electrodes is promising, it has been a challenge to find solutions that don't damage the brain tissue. Knowledge of how injuries heal faster with gelatin could therefore be significant for the development of surgical treatment as well," says Jens Schouenborg.
-end-
The research is funded by the Knut and Alice Wallenberg Foundation, the Swedish Research Council, Lund University and the Sven-Olof Jansons livsverk Foundation.

Lund University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.