Nav: Home

Fish provide insight into the evolution of the immune system

November 06, 2017

New research from the University of East Anglia (UEA), UK, and Dalhousie University, Canada, reveals how immune systems can evolve resistance to parasites.

A study, published today in Nature Communications, solves the enigma of how species can adapt and change their immune system to cope with new parasitic threats - whilst at the same time showing little or no evolutionary change in critical immune function over millions of years.

The findings help to explain why we humans have some immune genes that are almost identical to those of chimpanzees.

Scientists from UEA and Dalhousie University studied how Guppy fish (Poecilia reticulata) adapt to survive by studying their immune genes, known as the Major Histocompatibility Complex or MHC genes.

They found that guppies fine-tune these genes in each location, enabling them to adapt and survive in many different and extreme environments. Despite this adaptation, genes maintained critical function of tens of millions of years.

The discovery could improve scientists' understanding of how related species can adapt and change their immune system to cope with new threats from parasites while simultaneously sharing similar function.

Dr Jackie Lighten from UEA led the study. He said: "Guppies are a small, colourful fish native to South America, Trinidad and Tobago. They are a fantastic model for researching the ecology and evolution of vertebrates.

"MHC genes are an important line of defence in the immune system in vertebrates, including humans. Because parasites evolve quicker than their vertebrate hosts, immune genes need to be highly diverse to keep up with parasites and prevent infections.

"MHC genes produce protein structures that are on the external surface of cells. These genes are diverse and so produce an array of proteins, each of which presents a specific part of a parasite or pathogen that has attempted to infect the body. The specific shape of the protein dictates which parasites it can recognize, and signals to the immune system to prevent infection."

The study looked at MHC genetic variation in 59 guppy populations across Trinidad, Tobago, Barbados, and Hawaii. The authors found hundreds of different immune variants, but these so called 'alleles' appear to be clustered in a smaller number of functional groups or 'supertypes'.

Prof van Oosterhout, also from UEA's School of Environmental Sciences, said: "Each supertype protects the host against a specific group of parasites, and these supertypes were common across populations, and species, irrespective of the location.

"However, the alleles that make up a supertype track the rapid evolution of the parasites, and they too are evolving rapidly. These alleles are largely specific to each population, and they help in the 'fine-tuning' of the immune response to the specific (local) parasites that attack the host in that population."

Before this study, scientists debated how these immune genes can evolve rapidly (which is necessary to keep up with the fast-evolving parasites), whilst also showing little or no evolutionary change in their function over millions of years, as observed between humans and chimpanzees. This study resolves that debate.

Prof Bentzen from Dalhousie University said: "Although this study focused on MHC genes in vertebrates, the evolutionary dynamics described in it likely apply to other gene families, for example resistance genes and those which prevent self-fertilization in plants (self-incompatibility loci) that are caught up in their own evolutionary races."

Dr Lighten added: "It is an important step forward in understanding the evolutionary genetics of the immune system, and can help explain some of the puzzling observations observed in previous studies of many other organisms."

The research was funded by the British Ecological Society, Natural Sciences and Engineering Research Council of Canada (NSERC) and the Biotechnology and Biological Sciences Research Council (BBSRC).
-end-
'Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen' is published in the journal Nature Communications on November 3, 2017.

University of East Anglia

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.