Nav: Home

Fish provide insight into the evolution of the immune system

November 06, 2017

New research from the University of East Anglia (UEA), UK, and Dalhousie University, Canada, reveals how immune systems can evolve resistance to parasites.

A study, published today in Nature Communications, solves the enigma of how species can adapt and change their immune system to cope with new parasitic threats - whilst at the same time showing little or no evolutionary change in critical immune function over millions of years.

The findings help to explain why we humans have some immune genes that are almost identical to those of chimpanzees.

Scientists from UEA and Dalhousie University studied how Guppy fish (Poecilia reticulata) adapt to survive by studying their immune genes, known as the Major Histocompatibility Complex or MHC genes.

They found that guppies fine-tune these genes in each location, enabling them to adapt and survive in many different and extreme environments. Despite this adaptation, genes maintained critical function of tens of millions of years.

The discovery could improve scientists' understanding of how related species can adapt and change their immune system to cope with new threats from parasites while simultaneously sharing similar function.

Dr Jackie Lighten from UEA led the study. He said: "Guppies are a small, colourful fish native to South America, Trinidad and Tobago. They are a fantastic model for researching the ecology and evolution of vertebrates.

"MHC genes are an important line of defence in the immune system in vertebrates, including humans. Because parasites evolve quicker than their vertebrate hosts, immune genes need to be highly diverse to keep up with parasites and prevent infections.

"MHC genes produce protein structures that are on the external surface of cells. These genes are diverse and so produce an array of proteins, each of which presents a specific part of a parasite or pathogen that has attempted to infect the body. The specific shape of the protein dictates which parasites it can recognize, and signals to the immune system to prevent infection."

The study looked at MHC genetic variation in 59 guppy populations across Trinidad, Tobago, Barbados, and Hawaii. The authors found hundreds of different immune variants, but these so called 'alleles' appear to be clustered in a smaller number of functional groups or 'supertypes'.

Prof van Oosterhout, also from UEA's School of Environmental Sciences, said: "Each supertype protects the host against a specific group of parasites, and these supertypes were common across populations, and species, irrespective of the location.

"However, the alleles that make up a supertype track the rapid evolution of the parasites, and they too are evolving rapidly. These alleles are largely specific to each population, and they help in the 'fine-tuning' of the immune response to the specific (local) parasites that attack the host in that population."

Before this study, scientists debated how these immune genes can evolve rapidly (which is necessary to keep up with the fast-evolving parasites), whilst also showing little or no evolutionary change in their function over millions of years, as observed between humans and chimpanzees. This study resolves that debate.

Prof Bentzen from Dalhousie University said: "Although this study focused on MHC genes in vertebrates, the evolutionary dynamics described in it likely apply to other gene families, for example resistance genes and those which prevent self-fertilization in plants (self-incompatibility loci) that are caught up in their own evolutionary races."

Dr Lighten added: "It is an important step forward in understanding the evolutionary genetics of the immune system, and can help explain some of the puzzling observations observed in previous studies of many other organisms."

The research was funded by the British Ecological Society, Natural Sciences and Engineering Research Council of Canada (NSERC) and the Biotechnology and Biological Sciences Research Council (BBSRC).
-end-
'Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen' is published in the journal Nature Communications on November 3, 2017.

University of East Anglia

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.