Researchers develop data bus for quantum computer

November 06, 2017

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation, however, because quantum systems are very sensitive to environmental noise. Although systems can be protected from noise in principle, researchers have been able to build only small prototypes of quantum computers experimentally. One way to reduce the error rate is by encoding quantum information not in one single quantum particle but in several quantum objects. These logical quantum bits or qubits are more robust against noise. In the last few years, theoretical physicists have developed a whole range of error correction codes and optimized them for specific tasks. Physicists Hendrik Poulsen Nautrup and Hans Briegel from the Institute of Theoretical Physics of the University of Innsbruck and Nicolai Friis, now at the Institute of Quantum Optics and Quantum Information in Vienna, have found a technique to transfer quantum information between systems that are encoded differently.

Interface between processor and memory

Similar to classical computers, future quantum computers might be built with different components. Scientists have already built small-scale quantum processors and memories experimentally, and they have used different protocols to encode logical qubits: For example, for quantum processors they use so-called color codes and for quantum memories surface codes. "For the two systems to interact with each other quantum mechanically, we have to connect them," says PhD student Hendrik Poulsen Nautrup. "We have developed a protocol that allows us to merge quantum systems that are encoded differently." The scientists suggest to locally modify specific elements of the encoded quantum bits. This process is also called lattice surgery, which is used to couple systems such as quantum processors and memories. Once the systems are temporarily "sewed" together, quantum information can be teleported from the processor to the memory and vice versa. "Similar to a data bus in a conventional computer, scientists can use this technique to connect the components of a quantum computer," explains Poulsen Nautrup.

This new scheme is another step towards building a universal quantum computer and research for experimental realization is under way. The research was conducted within the framework of the doctoral program Atoms, Light, and Molecules offered at the University of Innsbruck and was funded by the Austrian Science Fund and the Templeton World Charity Foundation.

University of Innsbruck

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to