Diffused light shows clear structures

November 06, 2017

Scientists gain an insight into the fascinating world of atoms and molecules using x-ray microscopes. Ground-breaking research by physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), the Deutsches Elektronen Synchrotron (DESY) in Hamburg, and the University of Hamburg has paved the way towards new imaging techniques. The team of scientists have successfully developed and tested a method which is considerably more effective than conventional procedures. The researchers' findings have recently been published in the renowned journal Nature Physics.

Conventional methods researchers use to determine the structure of crystals and minerals are based on the coherent scattering of light. In other words, light waves hit a structure and are deflected, but continue to oscillate without their pattern of crests and troughs being distorted or interrupted in any way. If a sufficient number of these photons can be measured with a detector, a characteristic diffraction pattern is obtained which can be used to derive the pattern of scattered atoms or the crystal structure.

Most light waves, however, are scattered incoherently, that is the wave patterns of the outgoing waves are no longer directly in relation to the incoming waves as the light is reflected from the atoms it touches as fluorescent light. The result is diffuse background light which scientists have until now believed was not suitable for imaging, having a negative effect on the accuracy of the method.

This incoherently scattered light, however, is precisely what has now been used to analyse a structure. At DESY, the researchers successfully created an image of a hexagonal, micrometre sized structure in the shape of a benzene ring. The basic technique behind this procedure is not new. Robert Hanbury Brown and Richard Q. Twiss used incoherent light to determine the diameter of stars as early on as 1956. The team of researchers from Erlangen and Hamburg have now refined this method, using it to analyse microscopic structures.

The innovative method has one decisive advantage. 'The smaller the structures to be imaged, the larger the proportion of incoherently scattered light,' explains the lead author of the study, Raimund Schneider from FAU. 'Whilst this poses coherent imaging increasing problems with intensity, our method actually benefits from it.' The new method has the potential to achieve a significant improvement in analysing structures in the fields of biology and medicine.
The original publication 'Quantum Imaging with incoherently scattered light from a free-electron laser' was published in Nature Physics.

University of Erlangen-Nuremberg

Related Atoms Articles from Brightsurf:

How to gently caress atoms
It is extremely difficult to study oxygen molecules on the metal oxide surface without altering them.

'Hot and messy' entanglement of 15 trillion atoms
In a study published in Nature Communications, ICFO, HDU and UPV researchers report the production of a giant entangled state that may help medical researchers detect extremely faint magnetic signals from the brain.

Exciting apparatus helps atoms see the light
Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms - unusually large excited atoms - near nanometer-thin optical fibers.

Manipulating atoms to make better superconductors
A new study by University of Illinois at Chicago researchers published in the journal Nature Communications shows that it is possible to manipulate individual atoms so that they begin working in a collective pattern that has the potential to become superconducting at higher temperatures.

Grabbing atoms
In a first for quantum physics, University of Otago researchers have 'held' individual atoms in place and observed previously unseen complex atomic interactions.

Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.

2D materials: arrangement of atoms measured in silicene
Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties.

Atoms don't like jumping rope
Nanooptical traps are a promising building block for quantum technologies.

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.

Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.

Read More: Atoms News and Atoms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.