Measuring atoms for better navigation and mineral detection

November 06, 2017

Better navigation systems and tracking of minerals and water may be the result of a new discovery by physicists studying atom measurement devices.

University of Queensland PhD candidate Mr Samuel Nolan said the study investigated how to reduce errors in atom interferometers, devices that provide incredibly precise measurements of different physical quantities such as time, electric and magnetic fields, accelerations and rotations.

"Atom interferometers are used in the mining industry to detect what's beneath the ground; at sea to improve navigation; and to track movement of water across the planet," Mr Nolan said.

Mr Nolan worked with Dr Stuart Szigeti, ARC Centre for Excellence for Engineered Quantum Systems, The University of Queensland, and Dr Simon Haine, University of Sussex, to devise a way to decrease errors in atom measurement devices.

The technique provides greater flexibility in designing these quantum sensors and allows the devices to operate with unprecedented levels of precision.

"The measurement precision of atom interferometers can be boosted by exploiting a weird property of quantum waves called 'quantum entanglement' but so far they can't compete with more conventional precision sensors," he said.

Quantum entanglement is a phenomenon which Einstein famously called "spooky action at a distance".

"The proposed new technique allows atoms to be counted in a way that is very robust against detection noise, a problem with current devices, and could help to move experimental physics out of the laboratory and into the real world," Mr Nolan said.
The study, Optimal and Robust Quantum Metrology Using Interaction-Based Readouts, is published in Physical Review Letters (doi: 10.1103/PhysRevLett.119.193601).

University of Queensland

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to