Supermarket produce harbors antibiotic-resistance genes

November 06, 2018

Washington, DC - November 6, 2018 - Researchers from the Julius Kühn Institut, Germany have found that produce is a reservoir for transferable antibiotic resistance genes that often escape traditional molecular detection methods. These antibiotic resistance genes might escape cultivation-independent detection, but could still be transferred to human pathogens or commensals. The results, which highlight the importance of the rare microbiome of produce as a source of antibiotic resistance genes, are published November 6 in the open-access journal, mBio.

Produce is increasingly recognized as a source of pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes. This study aimed to explore methods to characterize the transferable resistome - the collection of antibiotic resistance genes present in bacteria - associated with produce. The researchers analyzed mixed salad, arugula, and cilantro purchased from supermarkets in Germany by cultivation and DNA-based methods.

These results confirmed that cultivation-independent DNA-based methods are not always suf?ciently sensitive to detect the transferable resistome in the rare microbiome, such as that of produce.
-end-
The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.